Ayub Ali Raza, Akram Waqas, Yaqoob Umer, Maqsood Nimra, Rafiq Sidra, Nabat Karim Youssef, Anwer Arslan, Somaily H H, Alansari Abdulkarim, Iqbal Javed
Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan.
Spectrochim Acta A Mol Biomol Spectrosc. 2025 Jan 5;324:125022. doi: 10.1016/j.saa.2024.125022. Epub 2024 Aug 22.
The highly adaptable optoelectronic and morphological properties of non-fullerene acceptors (NFAs) have made them a prominent research topic in the organic solar cell (OSC) field. This work describes the design of new molecules and investigates the potential optoelectronic aspects of remodified Y-series NFAs endowing with five new semi-circular shaped derivatives (BTPB1-BTPB5) based on the DFT-based quantum simulations. The designed molecules possess higher-lying LUMO energy levels with narrowed bandgaps and excellent coherence between the acceptor and core via inserted bridges. The molecules demonstrate a significant red shift and a wide-ranging absorption spectrum extending from 400 nm to 1500 nm, with the most extensive absorption occurring in the near-infrared (NIR) region. Effective π-π stacking and drastically lower binding energy certify facile charge dissociation and transmission rate. Thiophene-based bridge modification decreased reorganization energy by 47 % which results in facile charge transmission and high current density. Theoretically, simulated PCE is achieved as high as 31.49 % owing to the higher-lying LUMOs. The results demonstrate the value of designing systems and exploring new possibilities for developing effective Y-series NFAs-based high-performance organic solar cells.
非富勒烯受体(NFAs)具有高度适应性的光电和形态学特性,使其成为有机太阳能电池(OSC)领域的一个重要研究课题。这项工作描述了新分子的设计,并基于密度泛函理论(DFT)的量子模拟,研究了重新修饰的Y系列NFAs赋予五个新的半圆形衍生物(BTPB1-BTPB5)的潜在光电方面。所设计的分子具有较高的最低未占分子轨道(LUMO)能级,带隙变窄,并且通过插入的桥连在受体和核心之间具有出色的相干性。这些分子表现出显著的红移和从400纳米到1500纳米的广泛吸收光谱,其中最广泛的吸收发生在近红外(NIR)区域。有效的π-π堆积和大幅降低的结合能证明了电荷的容易解离和传输速率。基于噻吩的桥连修饰使重组能降低了47%,这导致了电荷的容易传输和高电流密度。理论上,由于较高的LUMO能级,模拟的功率转换效率(PCE)高达31.49%。结果证明了设计系统以及探索开发基于有效Y系列NFAs的高性能有机太阳能电池新可能性的价值。