Suppr超能文献

软件应用程序简介:用于不完全队列数据因果发现的 tpc 和 micd-R 包。

Software application profile: tpc and micd-R packages for causal discovery with incomplete cohort data.

机构信息

Department of Epidemiology, Boston University, Boston, MA, USA.

Department of Biometry and Data Management, Leibniz Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany.

出版信息

Int J Epidemiol. 2024 Aug 14;53(5). doi: 10.1093/ije/dyae113.

Abstract

MOTIVATION

The Peter Clark (PC) algorithm is a popular causal discovery method to learn causal graphs in a data-driven way. Until recently, existing PC algorithm implementations in R had important limitations regarding missing values, temporal structure or mixed measurement scales (categorical/continuous), which are all common features of cohort data. The new R packages presented here, micd and tpc, fill these gaps.

IMPLEMENTATION

micd and tpc packages are R packages.

GENERAL FEATURES

The micd package provides add-on functionality for dealing with missing values to the existing pcalg R package, including methods for multiple imputations relying on the Missing At Random assumption. Also, micd allows for mixed measurement scales assuming conditional Gaussianity. The tpc package efficiently exploits temporal information in a way that results in a more informative output that is less prone to statistical errors.

AVAILABILITY

The tpc and micd packages are freely available on the Comprehensive R Archive Network (CRAN). Their source code is also available on GitHub (https://github.com/bips-hb/micd; https://github.com/bips-hb/tpc).

摘要

动机

Peter Clark (PC) 算法是一种流行的因果发现方法,用于以数据驱动的方式学习因果图。直到最近,R 中现有的 PC 算法实现都存在重要的局限性,例如缺失值、时间结构或混合测量尺度(分类/连续),这些都是队列数据的常见特征。这里介绍的新的 R 包 micd 和 tpc 弥补了这些空白。

实现

micd 和 tpc 包是 R 包。

通用功能

micd 包为现有的 pcalg R 包提供了处理缺失值的附加功能,包括基于随机缺失假设的多重插补方法。此外,micd 允许在假设条件高斯性的情况下使用混合测量尺度。tpc 包以一种有效利用时间信息的方式,提供了更具信息量的输出,从而减少了统计误差的可能性。

可用性

tpc 和 micd 包可在 Comprehensive R Archive Network (CRAN) 上免费获得。它们的源代码也可在 GitHub 上获得(https://github.com/bips-hb/micd;https://github.com/bips-hb/tpc)。

相似文献

本文引用的文献

1
Invited commentary: where do the causal DAGS come from?邀请评论:因果 DAG 从何而来?
Am J Epidemiol. 2024 Aug 5;193(8):1075-1078. doi: 10.1093/aje/kwae028.
8
Review of Causal Discovery Methods Based on Graphical Models.基于图形模型的因果发现方法综述
Front Genet. 2019 Jun 4;10:524. doi: 10.3389/fgene.2019.00524. eCollection 2019.
9
Scoring Bayesian Networks of Mixed Variables.混合变量的贝叶斯网络评分
Int J Data Sci Anal. 2018 Aug;6(1):3-18. doi: 10.1007/s41060-017-0085-7. Epub 2018 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验