Wang Aiwen, Wang Yongze, You Yuanxiang, Huang Zhiqing, Zhang Xingwang, Li Shengying, Chen Hui
State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
Angew Chem Int Ed Engl. 2024 Nov 25;63(48):e202410260. doi: 10.1002/anie.202410260. Epub 2024 Oct 22.
Chemically inert hydrocarbons are the primary feedstocks used in the petrochemical industry and can be converted into more intricate and valuable chemicals. However, two major challenges impede this conversion process: selective activation of C-H bonds in hydrocarbons and systematic functionalization required to synthesize complex structures. To address these issues, we developed a multi-enzyme cascade conversion system based on internal cofactor and HO recycling to achieve the one-pot deep conversion from heptane to chiral (S)-2-aminoheptanoic acid under mild conditions. First, a hydrogen-borrowing-cycle-based NADH regeneration method and HO in situ generation and consumption strategy were applied to realize selective C-H bond oxyfunctionalization, converting heptane into 2-hydroxyheptanoic acid. Integrating subsequent reductive amination driven by the second hydrogen-borrowing cycle, (S)-2-aminoheptanoic acid was finally accumulated at 4.57 mM with ee>99 %. Hexane, octane, 2-methylheptane, and butylbenzene were also successfully converted into the corresponding chiral amino acids with ee>99 %. Overall, the conversion system employed internal cofactor and HO recycling, with O as the oxidant and ammonium as the amination reagent to fulfill the enzymatic conversion from chemically inert hydrocarbons into chiral amino acids under environmentally friendly conditions, which is a highly challenging transformation in traditional organic synthesis.
化学惰性的碳氢化合物是石化工业中使用的主要原料,并且可以转化为更复杂和有价值的化学品。然而,两个主要挑战阻碍了这种转化过程:碳氢化合物中C-H键的选择性活化以及合成复杂结构所需的系统官能化。为了解决这些问题,我们开发了一种基于内部辅因子和HO循环的多酶级联转化系统,以在温和条件下实现从庚烷到手性(S)-2-氨基庚酸的一锅法深度转化。首先,应用基于氢借用循环的NADH再生方法和HO原位生成与消耗策略来实现选择性C-H键氧官能化,将庚烷转化为2-羟基庚酸。整合由第二个氢借用循环驱动的后续还原胺化反应,最终以4.57 mM的浓度积累了ee>99%的(S)-2-氨基庚酸。己烷、辛烷、2-甲基庚烷和丁基苯也成功转化为ee>99%的相应手性氨基酸。总体而言,该转化系统采用内部辅因子和HO循环,以O作为氧化剂,铵作为胺化试剂,在环境友好的条件下实现了从化学惰性碳氢化合物到手性氨基酸的酶促转化,这在传统有机合成中是极具挑战性的转化。