Suppr超能文献

基于祖源的多基因风险评分结合传统危险因素可改善非洲人群心血管代谢结局的预测。

Ancestry-aligned polygenic scores combined with conventional risk factors improve prediction of cardiometabolic outcomes in African populations.

机构信息

Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, The University of the Witwatersrand, Johannesburg, South Africa.

Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

出版信息

Genome Med. 2024 Aug 26;16(1):106. doi: 10.1186/s13073-024-01377-6.

Abstract

BACKGROUND

Cardiovascular diseases (CVD) are a major health concern in Africa. Improved identification and treatment of high-risk individuals can reduce adverse health outcomes. Current CVD risk calculators are largely unvalidated in African populations and overlook genetic factors. Polygenic scores (PGS) can enhance risk prediction by measuring genetic susceptibility to CVD, but their effectiveness in genetically diverse populations is limited by a European-ancestry bias. To address this, we developed models integrating genetic data and conventional risk factors to assess the risk of developing cardiometabolic outcomes in African populations.

METHODS

We used summary statistics from a genome-wide association meta-analysis (n = 14,126) in African populations to derive novel genome-wide PGS for 14 cardiometabolic traits in an independent African target sample (Africa Wits-INDEPTH Partnership for Genomic Research (AWI-Gen), n = 10,603). Regression analyses assessed relationships between each PGS and corresponding cardiometabolic trait, and seven CVD outcomes (CVD, heart attack, stroke, diabetes mellitus, dyslipidaemia, hypertension, and obesity). The predictive utility of the genetic data was evaluated using elastic net models containing multiple PGS (MultiPGS) and reference-projected principal components of ancestry (PPCs). An integrated risk prediction model incorporating genetic and conventional risk factors was developed. Nested cross-validation was used when deriving elastic net models to enhance generalisability.

RESULTS

Our African-specific PGS displayed significant but variable within- and cross- trait prediction (max.R = 6.8%, p = 1.86 × 10). Significantly associated PGS with dyslipidaemia included the PGS for total cholesterol (logOR = 0.210, SE = 0.022, p = 2.18 × 10) and low-density lipoprotein (logOR =  - 0.141, SE = 0.022, p = 1.30 × 10); with hypertension, the systolic blood pressure PGS (logOR = 0.150, SE = 0.045, p = 8.34 × 10); and multiple PGS associated with obesity: body mass index (max. logOR = 0.131, SE = 0.031, p = 2.22 × 10), hip circumference (logOR = 0.122, SE = 0.029, p = 2.28 × 10), waist circumference (logOR = 0.013, SE = 0.098, p = 8.13 × 10) and weight (logOR = 0.103, SE = 0.029, p = 4.89 × 10). Elastic net models incorporating MultiPGS and PPCs significantly improved prediction over MultiPGS alone. Models including genetic data and conventional risk factors were more predictive than conventional risk models alone (dyslipidaemia: R increase = 2.6%, p = 4.45 × 10; hypertension: R increase = 2.6%, p = 2.37 × 10; obesity: R increase = 5.5%, 1.33 × 10).

CONCLUSIONS

In African populations, CVD and associated cardiometabolic trait prediction models can be improved by incorporating ancestry-aligned PGS and accounting for ancestry. Combining PGS with conventional risk factors further enhances prediction over traditional models based on conventional factors. Incorporating data from target populations can improve the generalisability of international predictive models for CVD and associated traits in African populations.

摘要

背景

心血管疾病 (CVD) 是非洲的主要健康问题。提高对高危人群的识别和治疗能力可以降低不良健康结果的发生。目前,CVD 风险计算器在非洲人群中尚未得到充分验证,并且忽略了遗传因素。多基因评分 (PGS) 可以通过测量对 CVD 的遗传易感性来增强风险预测,但由于欧洲血统的偏差,其在遗传多样化人群中的有效性受到限制。为了解决这个问题,我们开发了一种模型,该模型整合了遗传数据和常规风险因素,以评估非洲人群发生心血管代谢结局的风险。

方法

我们使用非洲人群全基因组关联荟萃分析的汇总统计数据(n=14126),在一个独立的非洲目标样本(非洲威特斯-INDEPTH 基因组研究伙伴关系 (AWI-Gen),n=10603)中得出 14 种心血管代谢特征的新型全基因组 PGS。回归分析评估了每个 PGS 与相应心血管代谢特征以及 7 种 CVD 结局(CVD、心脏病发作、中风、糖尿病、血脂异常、高血压和肥胖)之间的关系。使用包含多个 PGS(MultiPGS)和参考投影祖先主成分(PPCs)的弹性网络模型评估遗传数据的预测能力。开发了一种包含遗传和常规风险因素的综合风险预测模型。在得出弹性网络模型时使用嵌套交叉验证来增强通用性。

结果

我们的非洲特异性 PGS 显示出在特征内和跨特征预测方面具有显著但可变的作用(最大 R=6.8%,p=1.86×10)。与血脂异常显著相关的 PGS 包括总胆固醇 PGS(logOR=0.210,SE=0.022,p=2.18×10)和低密度脂蛋白 PGS(logOR=−0.141,SE=0.022,p=1.30×10);与高血压相关的是收缩压 PGS(logOR=0.150,SE=0.045,p=8.34×10);多个 PGS 与肥胖相关:体重指数(最大 logOR=0.131,SE=0.031,p=2.22×10)、臀围(logOR=0.122,SE=0.029,p=2.28×10)、腰围(logOR=0.013,SE=0.098,p=8.13×10)和体重(logOR=0.103,SE=0.029,p=4.89×10)。包含 MultiPGS 和 PPCs 的弹性网络模型显著提高了多 PGS 单独预测的准确性。包含遗传数据和常规风险因素的模型比常规风险模型单独预测更为准确(血脂异常:R 增加=2.6%,p=4.45×10;高血压:R 增加=2.6%,p=2.37×10;肥胖:R 增加=5.5%,1.33×10)。

结论

在非洲人群中,通过纳入与祖先一致的 PGS 并考虑祖先,可以改善 CVD 和相关心血管代谢特征的预测模型。将 PGS 与常规风险因素相结合,可以进一步提高基于常规因素的传统模型的预测能力。纳入目标人群的数据可以提高 CVD 及其相关特征在非洲人群中的国际预测模型的通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0295/11346299/b676870e6527/13073_2024_1377_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验