Cui Chunyu, Xu Liang, Yu Peiping, Wang Nan, Ni Fenglou, Guo Wen, Yang Hao, Cheng Tao, Zhang Bo
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, China.
ChemSusChem. 2025 Jan 14;18(2):e202400940. doi: 10.1002/cssc.202400940. Epub 2024 Dec 4.
Electrochemical reduction of CO into valuable multicarbon (C) liquids is crucial for reducing CO emissions and advancing clean energy, yet mastering efficiency and selectivity in this process remains a tough challenge. Herein, we employ a surface-modification strategy using electrochemically active polymeric 1,4,5,8-naphthalenete-tracarboxylic dianhydride (PNTCDA)-modified copper nanosheets (PM-Cu) to rearrange reactive species in the electric double layer, where the PNTCDA triggers a distinctive enolization that anchor potassium ions (K) onto the cathode surface under reduction condition. Electrochemical analysis and computational simulations revealed that this approach fine-tunes K distribution in the double layer, making the dehydration of hydrated K more efficient and reducing active water molecules at the interface, thus inhibiting the hydrogen evolution reaction while concurrently promoting CO reduction via enhanced C-C coupling. For the first time, the PM-Cu catalyst demonstrates ampere-scale current densities with the exclusive selectivity of a C liquid product yield exceeding 90 %. Thus, by tailoring the local microenvironment with electrochemically active organics, it is possible to modulate CO reduction, improve sustainable energy storage, and increase industrial carbon utilization.
将二氧化碳电化学还原为有价值的多碳(C)液体对于减少二氧化碳排放和推进清洁能源至关重要,但在此过程中掌握效率和选择性仍然是一项艰巨的挑战。在此,我们采用一种表面改性策略,使用电化学活性聚合物1,4,5,8-萘四甲酸二酐(PNTCDA)修饰的铜纳米片(PM-Cu)来重新排列双电层中的反应物种,其中PNTCDA引发独特的烯醇化反应,在还原条件下将钾离子(K)锚定在阴极表面。电化学分析和计算模拟表明,这种方法微调了双电层中的钾分布,使水合钾的脱水更有效,并减少了界面处的活性水分子,从而抑制析氢反应,同时通过增强碳-碳耦合促进二氧化碳还原。首次,PM-Cu催化剂展示了安培级电流密度,且C液体产物产率的选择性超过90%。因此,通过用电化学活性有机物定制局部微环境,可以调节二氧化碳还原、改善可持续储能并提高工业碳利用率。