Song Jia, Zhang Hongbo, Sun Rongbo, Liu Peigen, Ma Xianhui, Chen Cai, Guo Wenxin, Zheng Xusheng, Zhou Huang, Gao Yong, Cui Wengang, Pan Hongge, Zhang Zhuhua, Wu Yuen
Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China.
State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
ACS Nano. 2024 Apr 30;18(17):11416-11424. doi: 10.1021/acsnano.4c01599. Epub 2024 Apr 16.
CO plays a crucial role as an intermediate in electrochemical CO conversion to generate multicarbon (C) products. However, optimizing the coverage of the CO intermediate (*CO) to improve the selectivity of C products remains a great challenge. Here, we designed a hierarchically structured double hollow spherical nanoreactor featuring atomically dispersed nickel (Ni) atoms as the core and copper (Cu) nanoparticles as the shell, which can greatly improve the catalytic activity and selectivity for C compounds. Within this configuration, CO generated at the active Ni sites on the inner layer accumulates in the cavity before spilling over neighboring Cu sites on the outer layer, thus enhancing CO dimerization within the cavity. Notably, this setup achieves a sustained faradaic efficiency of 74.4% for C production, with partial current densities reaching 337.4 mA cm. In situ Raman spectroscopy and finite-element method (FEM) simulations demonstrate that the designed local CO generator can effectively increase the local CO concentration and restrict CO evolution, ultimately boosting C-C coupling. The hierarchically ordered architectural design represents a promising solution for achieving highly selective C compound production in the electroreduction of CO.
一氧化碳作为电化学一氧化碳转化生成多碳(C)产物过程中的中间体,起着至关重要的作用。然而,优化一氧化碳中间体(*CO)的覆盖度以提高C产物的选择性仍然是一项巨大挑战。在此,我们设计了一种具有分级结构的双空心球形纳米反应器,其以原子级分散的镍(Ni)原子为核心、铜(Cu)纳米颗粒为壳层,这能够极大提高对C化合物的催化活性和选择性。在这种结构中,在内层活性Ni位点生成的一氧化碳在向外层相邻Cu位点溢流之前先在腔内累积,从而增强腔内的一氧化碳二聚化。值得注意的是,这种装置实现了C产物持续74.4%的法拉第效率,部分电流密度达到337.4 mA cm。原位拉曼光谱和有限元方法(FEM)模拟表明,所设计的局部一氧化碳发生器能够有效提高局部一氧化碳浓度并抑制一氧化碳逸出,最终促进碳 - 碳偶联。这种分级有序的结构设计是在一氧化碳电还原中实现高选择性C化合物生产的一种很有前景的解决方案。