Alamir Salwa Husam, Tufaro Vincenzo, Trilli Matilde, Kitslaar Pieter, Mathur Anthony, Baumbach Andreas, Jacob Joseph, Bourantas Christos V, Torii Ryo
Department of Mechanical Engineering, University College London, London, United Kingdom.
Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.
Front Bioeng Biotechnol. 2024 Aug 12;12:1360330. doi: 10.3389/fbioe.2024.1360330. eCollection 2024.
There is increasing evidence that coronary artery wall shear stress (WSS) measurement provides useful prognostic information that allows prediction of adverse cardiovascular events. Computational Fluid Dynamics (CFD) has been extensively used in research to measure vessel physiology and examine the role of the local haemodynamic forces on the evolution of atherosclerosis. Nonetheless, CFD modelling remains computationally expensive and time-consuming, making its direct use in clinical practice inconvenient. A number of studies have investigated the use of deep learning (DL) approaches for fast WSS prediction. However, in these reports, patient data were limited and most of them used synthetic data generation methods for developing the training set. In this paper, we implement 2 approaches for synthetic data generation and combine their output with real patient data in order to train a DL model with a U-net architecture for prediction of WSS in the coronary arteries. The model achieved 6.03% Normalised Mean Absolute Error (NMAE) with inference taking only 0.35 s; making this solution time-efficient and clinically relevant.
越来越多的证据表明,冠状动脉壁剪切应力(WSS)测量可提供有用的预后信息,有助于预测不良心血管事件。计算流体动力学(CFD)已在研究中广泛用于测量血管生理状况,并研究局部血流动力学力在动脉粥样硬化演变中的作用。尽管如此,CFD建模在计算上仍然昂贵且耗时,这使得它在临床实践中的直接应用并不方便。许多研究探讨了使用深度学习(DL)方法进行快速WSS预测。然而,在这些报告中,患者数据有限,并且大多数研究使用合成数据生成方法来开发训练集。在本文中,我们实现了两种合成数据生成方法,并将它们的输出与真实患者数据相结合,以便训练一个具有U-net架构的DL模型来预测冠状动脉中的WSS。该模型的归一化平均绝对误差(NMAE)为6.03%,推理时间仅为0.35秒;这使得该解决方案具有时间效率且与临床相关。