Suppr超能文献

登记数据的事件发生时间分析中的陷阱:基于模拟和实际案例的教程

Pitfalls in time-to-event analysis of registry data: a tutorial based on simulated and real cases.

作者信息

Alligon Mickaël, Mahlaoui Nizar, Bouaziz Olivier

机构信息

French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.

Immuno-Haematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.

出版信息

Front Epidemiol. 2024 Jul 11;4:1386922. doi: 10.3389/fepid.2024.1386922. eCollection 2024.

Abstract

Survival analysis (also referred to as time-to-event analysis) is the study of the time elapsed from a starting date to some event of interest. In practice, these analyses can be challenging and, if methodological errors are to be avoided, require the application of appropriate techniques. By using simulations and real-life data based on the French national registry of patients with primary immunodeficiencies (CEREDIH), we sought to highlight the basic elements that need to be handled correctly when performing the initial steps in a survival analysis. We focused on non-parametric methods to deal with right censoring, left truncation, competing risks, and recurrent events. Our simulations show that ignoring these aspects induces a bias in the results; we then explain how to analyze the data correctly in these situations using non-parametric methods. Rare disease registries are extremely valuable in medical research. We discuss the application of appropriate methods for the analysis of time-to-event from the CEREDIH registry. The objective of this tutorial article is to provide clinicians and healthcare professionals with better knowledge of the issues facing them when analyzing time-to-event data.

摘要

生存分析(也称为事件发生时间分析)是对从起始日期到某个感兴趣事件所经过时间的研究。在实际操作中,这些分析可能具有挑战性,并且要避免方法错误,就需要应用适当的技术。通过使用基于法国原发性免疫缺陷患者国家登记处(CEREDIH)的模拟数据和实际数据,我们试图突出在进行生存分析初始步骤时需要正确处理的基本要素。我们专注于处理右删失、左截断、竞争风险和复发事件的非参数方法。我们的模拟表明,忽略这些方面会导致结果出现偏差;然后我们解释如何在这些情况下使用非参数方法正确分析数据。罕见病登记处在医学研究中极具价值。我们讨论了适用于分析CEREDIH登记处事件发生时间的方法。本教程文章的目的是让临床医生和医疗保健专业人员更好地了解在分析事件发生时间数据时所面临的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba21/11345615/9e92b758bc88/fepid-04-1386922-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验