文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米材料在疫苗中的文献计量学分析:趋势、合作及未来方向。

A bibliometric insight into nanomaterials in vaccine: trends, collaborations, and future avenues.

机构信息

Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

出版信息

Front Immunol. 2024 Aug 12;15:1420216. doi: 10.3389/fimmu.2024.1420216. eCollection 2024.


DOI:10.3389/fimmu.2024.1420216
PMID:39188723
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11345159/
Abstract

BACKGROUND: The emergence of nanotechnology has injected new vigor into vaccine research. Nanovaccine research has witnessed exponential growth in recent years; yet, a comprehensive analysis of related publications has been notably absent. OBJECTIVE: This study utilizes bibliometric methodologies to reveal the evolution of themes and the distribution of nanovaccine research. METHODS: Using tools such as VOSviewer, CiteSpace, Scimago Graphica, Pajek, R-bibliometrix, and R packages for the bibliometric analysis and visualization of literature retrieved from the Web of Science database. RESULTS: Nanovaccine research commenced in 1981. The publication volume exponentially increased, notably in 2021. Leading contributors include the United States, the Chinese Academy of Sciences, the "", and researcher Zhao Kai. Other significant contributors comprise China, the University of California, San Diego, Veronique Preat, the , and the National Natural Science Foundation of China. The USA functions as a central hub for international cooperation. Financial support plays a pivotal role in driving research advancements. Key themes in highly cited articles include vaccine carrier design, cancer vaccines, nanomaterial properties, and COVID-19 vaccines. Among 7402 keywords, the principal nanocarriers include Chitosan, virus-like particles, gold nanoparticles, PLGA, and lipid nanoparticles. Nanovaccine is primarily intended to address diseases including SARS-CoV-2, cancer, influenza, and HIV. Clustering analysis of co-citation networks identifies 9 primary clusters, vividly illustrating the evolution of research themes over different periods. Co-citation bursts indicate that cancer vaccines, COVID-19 vaccines, and mRNA vaccines are pivotal areas of focus for current and future research in nanovaccines. "candidate vaccines," "protein nanoparticle," "cationic lipids," "ionizable lipids," "machine learning," "long-term storage," "personalized cancer vaccines," "neoantigens," "outer membrane vesicles," " nanovaccine," and "biomimetic nanotechnologies" stand out as research interest. CONCLUSIONS: This analysis emphasizes the increasing scholarly interest in nanovaccine research and highlights pivotal recent research themes such as cancer and COVID-19 vaccines, with lipid nanoparticle-mRNA vaccines leading novel research directions.

摘要

背景:纳米技术的出现为疫苗研究注入了新的活力。近年来,纳米疫苗研究呈指数级增长,但对相关文献的综合分析却明显缺失。

目的:本研究利用文献计量学方法揭示纳米疫苗研究的主题演变和分布。

方法:使用 VOSviewer、CiteSpace、Scimago Graphica、Pajek、R-bibliometrix 和 R 包等工具,对从 Web of Science 数据库中检索到的文献进行文献计量分析和可视化。

结果:纳米疫苗研究始于 1981 年,发表量呈指数级增长,特别是在 2021 年。主要贡献者包括美国、中国科学院、“”和研究员赵凯。其他重要贡献者包括中国、加州大学圣地亚哥分校、Veronique Preat、“”和中国国家自然科学基金委员会。美国是国际合作的中心枢纽。资金支持在推动研究进展方面发挥着关键作用。高引文章的关键主题包括疫苗载体设计、癌症疫苗、纳米材料特性和 COVID-19 疫苗。在 7402 个关键词中,主要的纳米载体包括壳聚糖、病毒样颗粒、金纳米粒子、PLGA 和脂质纳米粒子。纳米疫苗主要用于解决包括 SARS-CoV-2、癌症、流感和 HIV 在内的疾病。共被引网络的聚类分析确定了 9 个主要聚类,生动地展示了不同时期研究主题的演变。共被引突发表明,癌症疫苗、COVID-19 疫苗和 mRNA 疫苗是当前和未来纳米疫苗研究的重点领域。“候选疫苗”、“蛋白纳米颗粒”、“阳离子脂质”、“离子化脂质”、“机器学习”、“长期储存”、“个性化癌症疫苗”、“新抗原”、“外膜囊泡”、“纳米疫苗”和“仿生纳米技术”是研究热点。

结论:本分析强调了学者对纳米疫苗研究日益浓厚的兴趣,并突出了最近的关键研究主题,如癌症和 COVID-19 疫苗,脂质纳米颗粒-mRNA 疫苗引领新的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/17b50147d978/fimmu-15-1420216-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/69f440227bf9/fimmu-15-1420216-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/4a10243b5942/fimmu-15-1420216-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/ca20b714f963/fimmu-15-1420216-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/dcc870f4c16e/fimmu-15-1420216-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/8882ed7dccd7/fimmu-15-1420216-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/61bba35cef4a/fimmu-15-1420216-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/08cf7c2b2003/fimmu-15-1420216-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/03048d192b19/fimmu-15-1420216-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/17b50147d978/fimmu-15-1420216-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/69f440227bf9/fimmu-15-1420216-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/4a10243b5942/fimmu-15-1420216-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/ca20b714f963/fimmu-15-1420216-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/dcc870f4c16e/fimmu-15-1420216-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/8882ed7dccd7/fimmu-15-1420216-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/61bba35cef4a/fimmu-15-1420216-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/08cf7c2b2003/fimmu-15-1420216-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/03048d192b19/fimmu-15-1420216-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18df/11345159/17b50147d978/fimmu-15-1420216-g009.jpg

相似文献

[1]
A bibliometric insight into nanomaterials in vaccine: trends, collaborations, and future avenues.

Front Immunol. 2024

[2]
Current status and future directions of nanovaccine for cancer: a bibliometric analysis during 2004-2023.

Front Immunol. 2024

[3]
Top 100 cited research on COVID-19 vaccines: A bibliometric analysis and evidence mapping.

Hum Vaccin Immunother. 2024-12-31

[4]
Decoding trends in mRNA vaccine research: A comprehensive bibliometric study.

Hum Vaccin Immunother. 2024-12-31

[5]
Global research on RNA vaccines for COVID-19 from 2019 to 2023: a bibliometric analysis.

Front Immunol. 2024

[6]
Global research trends in MERS-CoV: A comprehensive bibliometric analysis from 2012 to 2021.

Front Public Health. 2022

[7]
Knowledge Mapping of Macrophages in Osteoporosis: A Bibliometric Analysis (1999-2023).

Orthop Surg. 2024-10

[8]
A bibliometric insight into neoadjuvant chemotherapy in bladder cancer: trends, collaborations, and future avenues.

Front Immunol. 2024

[9]
The top 100 most cited articles on COVID-19 vaccine: a bibliometric analysis.

Clin Exp Med. 2023-10

[10]
Research trends in COVID-19 vaccine: a bibliometric analysis.

Hum Vaccin Immunother. 2021-8-3

引用本文的文献

[1]
Global research trends and focus on immunotherapy for endometrial cancer: a comprehensive bibliometric insight and visualization analysis (2012-2024).

Front Immunol. 2025-4-8

本文引用的文献

[1]
Nanoparticle display of prefusion coronavirus spike elicits S1-focused cross-reactive antibody response against diverse coronavirus subgenera.

Nat Commun. 2023-10-4

[2]
Research progress of nanovaccine in anti-tumor immunotherapy.

Front Oncol. 2023-8-24

[3]
Research trends on nanomaterials in gastric cancer: a bibliometric analysis from 2004 to 2023.

J Nanobiotechnology. 2023-8-2

[4]
Understanding structure activity relationships of Good HEPES lipids for lipid nanoparticle mRNA vaccine applications.

Biomaterials. 2023-10

[5]
Self-Immolated Nanoadjuvant for In Situ Vaccination Immunotherapy of Colorectal Cancer.

Adv Healthc Mater. 2023-9

[6]
A ferritin-based COVID-19 nanoparticle vaccine that elicits robust, durable, broad-spectrum neutralizing antisera in non-human primates.

Nat Commun. 2023-4-17

[7]
Vaccine-like nanomedicine for cancer immunotherapy.

J Control Release. 2023-3

[8]
Mapping the knowledge of traffic collision Reconstruction: A scientometric analysis in CiteSpace, VOSviewer, and SciMAT.

Sci Justice. 2023-1

[9]
"Trojan horse" nanoparticle-delivered cancer cell membrane vaccines to enhance cancer immunotherapy by overcoming immune-escape.

Biomater Sci. 2023-3-14

[10]
Acid-Ionizable Iron Nanoadjuvant Augments STING Activation for Personalized Vaccination Immunotherapy of Cancer.

Adv Mater. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索