Suppr超能文献

具有流数据的高维广义线性模型中的在线推理

Online inference in high-dimensional generalized linear models with streaming data.

作者信息

Luo Lan, Han Ruijian, Lin Yuanyuan, Huang Jian

机构信息

Department of Biostatistics and Epidemiology, Rutgers School of Public Health, New Jersey, USA.

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China.

出版信息

Electron J Stat. 2023;17(2):3443-3471. doi: 10.1214/23-ejs2182. Epub 2023 Nov 28.

Abstract

In this paper we develop an online statistical inference approach for high-dimensional generalized linear models with streaming data for realtime estimation and inference. We propose an online debiased lasso method that aligns with the data collection scheme of streaming data. Online debiased lasso differs from offline debiased lasso in two important aspects. First, it updates component-wise confidence intervals of regression coefficients with only summary statistics of the historical data. Second, online debiased lasso adds an additional term to correct approximation errors accumulated throughout the online updating procedure. We show that our proposed online debiased estimators in generalized linear models are asymptotically normal. This result provides a theoretical basis for carrying out real-time interim statistical inference with streaming data. Extensive numerical experiments are conducted to evaluate the performance of our proposed online debiased lasso method. These experiments demonstrate the effectiveness of our algorithm and support the theoretical results. Furthermore, we illustrate the application of our method with a high-dimensional text dataset.

摘要

在本文中,我们针对具有流数据的高维广义线性模型开发了一种在线统计推断方法,用于实时估计和推断。我们提出了一种在线去偏套索方法,该方法与流数据的数据收集方案相一致。在线去偏套索在两个重要方面与离线去偏套索不同。首先,它仅使用历史数据的汇总统计信息来更新回归系数的逐分量置信区间。其次,在线去偏套索添加了一个额外的项来校正在线更新过程中累积的近似误差。我们表明,我们在广义线性模型中提出的在线去偏估计量是渐近正态的。这一结果为使用流数据进行实时中期统计推断提供了理论基础。进行了广泛的数值实验来评估我们提出的在线去偏套索方法的性能。这些实验证明了我们算法的有效性,并支持理论结果。此外,我们用一个高维文本数据集说明了我们方法的应用。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验