Cai T Tony, Zhang Anru R, Zhou Yuchen
Department of Statistics & Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104.
Departments of Biostatistics & Bioinformatics, Computer Science, Mathematics, and Statistical Science, Duke University, Durham, NC 27710.
IEEE Trans Inf Theory. 2022 Sep;68(9):5975-6002. doi: 10.1109/tit.2022.3175455. Epub 2022 May 16.
We study sparse group Lasso for high-dimensional double sparse linear regression, where the parameter of interest is simultaneously element-wise and group-wise sparse. This problem is an important instance of the simultaneously structured model - an actively studied topic in statistics and machine learning. In the noiseless case, matching upper and lower bounds on sample complexity are established for the exact recovery of sparse vectors and for stable estimation of approximately sparse vectors, respectively. In the noisy case, upper and matching minimax lower bounds for estimation error are obtained. We also consider the debiased sparse group Lasso and investigate its asymptotic property for the purpose of statistical inference. Finally, numerical studies are provided to support the theoretical results.
我们研究用于高维双稀疏线性回归的稀疏组套索,其中感兴趣的参数同时在元素层面和组层面上是稀疏的。这个问题是同时结构化模型的一个重要实例——这是统计学和机器学习中一个正在积极研究的主题。在无噪声情况下,分别为稀疏向量的精确恢复和近似稀疏向量的稳定估计建立了样本复杂度的匹配上界和下界。在有噪声情况下,获得了估计误差的上界和匹配的极小极大下界。我们还考虑了去偏稀疏组套索,并为了统计推断研究了它的渐近性质。最后,提供了数值研究来支持理论结果。