Nourhani Amir
Department of Mechanical Engineering, University of Akron, Akron, OH, USA.
Biomimicry Research and Innovation Center (BRIC), University of Akron, Akron, OH, USA.
Soft Matter. 2024 Sep 11;20(35):6907-6919. doi: 10.1039/d4sm00360h.
By introducing geometry-based phoresis kernels, we establish a direct connection between the translational and rotational velocities of a phoretic sphere and the distributions of the driving fields or fluxes. The kernels quantify the local contribution of the field or flux to the particle dynamics. The field kernels for both passive and active particles share the same functional form, depending on the position-dependent surface phoretic mobility. For uniform phoretic mobility, the translational field kernel is proportional to the surface normal vector, while the rotational field kernel is zero; thus, a phoretic sphere with uniform phoretic mobility does not rotate. As case studies, we discuss examples of a self-phoretic axisymmetric particle influenced by a globally-driven field gradient, a general scenario for axisymmetric self-phoretic particle and two of its special cases, and a non-axisymmetric active particle.
通过引入基于几何的电泳核,我们在电泳球体的平移速度和旋转速度与驱动场或通量的分布之间建立了直接联系。这些核量化了场或通量对粒子动力学的局部贡献。被动和主动粒子的场核具有相同的函数形式,这取决于位置相关的表面电泳迁移率。对于均匀的电泳迁移率,平移场核与表面法向量成比例,而旋转场核为零;因此,具有均匀电泳迁移率的电泳球体不会旋转。作为案例研究,我们讨论了受全局驱动场梯度影响的自电泳轴对称粒子的例子、轴对称自电泳粒子的一般情况及其两个特殊情况,以及一个非轴对称主动粒子。