Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India.
Cancer Invest. 2024 Sep;42(8):710-725. doi: 10.1080/07357907.2024.2391359. Epub 2024 Aug 27.
This work proposed a liver cancer classification scheme that includes Preprocessing, Feature extraction, and classification stages. The source images are pre-processed using Gaussian filtering. For segmentation, this work proposes a LUV transformation-based adaptive thresholding-based segmentation process. After the segmentation, certain features are extracted that include multi-texon based features, Improved Local Ternary Pattern (LTP-based features), and GLCM features during this phase. In the Classification phase, an improved Deep Maxout model is proposed for liver cancer detection. The adopted scheme is evaluated over other schemes based on various metrics. While the learning rate is 60%, an improved deep maxout model achieved a higher -measure value (0.94) for classifying liver cancer; however, the previous method like Support Vector Machine (SVM), Random Forest (RF), Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), K-Nearest Neighbor (KNN), Deep maxout, Convolutional Neural Network (CNN), and DL model holds less -measure value. An improved deep maxout model achieved minimal False Positive Rate (FPR), and False Negative Rate (FNR) values with the best outcomes compared to other existing models for liver cancer classification.
本工作提出了一种肝癌分类方案,包括预处理、特征提取和分类阶段。源图像采用高斯滤波进行预处理。对于分割,本工作提出了一种基于 LUV 变换的自适应阈值分割过程。分割后,在此阶段提取了某些特征,包括基于多纹理的特征、改进的局部三值模式(基于 LTP 的特征)和 GLCM 特征。在分类阶段,提出了一种改进的深度最大输出模型用于肝癌检测。所采用的方案基于各种指标与其他方案进行了评估。当学习率为 60%时,改进的深度最大输出模型在肝癌分类方面实现了更高的 -measure 值(0.94);然而,以前的方法,如支持向量机(SVM)、随机森林(RF)、递归神经网络(RNN)、长短期记忆(LSTM)、K-最近邻(KNN)、深度最大输出、卷积神经网络(CNN)和 DL 模型的 -measure 值较低。与其他现有的肝癌分类模型相比,改进的深度最大输出模型在肝癌分类方面实现了最小的假阳性率(FPR)和假阴性率(FNR)值,取得了最佳效果。