Suppr超能文献

基于深度学习的混合动力骑手优化的生物医学肝癌检测与分类。

Hybrid Rider Optimization with Deep Learning Driven Biomedical Liver Cancer Detection and Classification.

机构信息

Department of Computer Science, College of Sciences and Humanities-Aflaj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.

Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

出版信息

Comput Intell Neurosci. 2022 Jun 30;2022:6162445. doi: 10.1155/2022/6162445. eCollection 2022.

Abstract

Biomedical engineering is the application of the principles and problem-solving methods of engineering to biology along with medicine. Computation intelligence is the study of design of intelligent agents which are systems acting perceptively. The computation intelligence paradigm offers more advantages to the enhancement and maintenance of the field of biomedical engineering. Liver cancer is the major reason of mortality worldwide. Earlier-stage diagnosis and treatment might increase the survival rate of liver cancer patients. Manual recognition of the cancer tissue is a time-consuming and difficult task. Hence, a computer-aided diagnosis (CAD) is employed in decision making procedures for accurate diagnosis and effective treatment. In contrast to classical image-dependent "semantic" feature evaluation from human expertise, deep learning techniques could learn feature representation automatically from sample images using convolutional neural network (CNN). This study introduces a Hybrid Rider Optimization with Deep Learning Driven Biomedical Liver Cancer Detection and Classification (HRO-DLBLCC) model. The proposed HRO-DLBLCC model majorly focuses on the identification of liver cancer in the medical images. To do so, the proposed HRO-DLBLCC model employs preprocessing in two stages, namely, Gabor filtering (GF) based noise removal and watershed transform based segmentation. In addition, the proposed HRO-DLBLCC model involves NAdam optimizer with DenseNet-201 based feature extractor to generate an optimal set of feature vectors. Finally, the HRO algorithm with recurrent neural network-long short-term memory (RNN-LSTM) model is applied for liver cancer classification, in which the hyperparameters of the RNN-LSTM model are tuned by the use of HRO algorithm. The HRO-DLBLCC model is experimentally validated and compared with existing models. The experimental results assured the promising performance of the HRO-DLBLCC model over recent approaches.

摘要

生物医学工程是将工程学的原理和问题解决方法应用于生物学和医学。计算智能是设计具有感知能力的智能体系统的研究。计算智能范式为增强和维护生物医学工程领域提供了更多优势。肝癌是全球死亡率的主要原因。早期诊断和治疗可能会提高肝癌患者的生存率。手动识别癌症组织是一项耗时且困难的任务。因此,计算机辅助诊断(CAD)被用于决策程序,以进行准确的诊断和有效的治疗。与传统的基于图像的“语义”特征评估方法相比,深度学习技术可以使用卷积神经网络(CNN)自动从样本图像中学习特征表示。本研究介绍了一种基于混合骑手优化与深度学习驱动的生物医学肝癌检测与分类(HRO-DLBLCC)模型。所提出的 HRO-DLBLCC 模型主要关注医学图像中的肝癌识别。为此,所提出的 HRO-DLBLCC 模型在两个阶段采用预处理,即基于 Gabor 滤波(GF)的噪声去除和基于分水岭变换的分割。此外,所提出的 HRO-DLBLCC 模型还涉及带有 DenseNet-201 基于特征提取器的 NAdam 优化器,以生成最优的特征向量集。最后,使用 HRO 算法和递归神经网络长期短期记忆(RNN-LSTM)模型对肝癌进行分类,其中 RNN-LSTM 模型的超参数通过 HRO 算法进行调整。对 HRO-DLBLCC 模型进行了实验验证,并与现有模型进行了比较。实验结果确保了 HRO-DLBLCC 模型在最近方法中的有前途的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e85/9262480/478022257d8f/CIN2022-6162445.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验