Samanta Kushal, Deswal Priyanka, Alam Shayeeque, Bhati Manav, Ivanov Sergei A, Tretiak Sergei, Ghosh Dibyajyoti
Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
Department of Physics, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
ACS Nano. 2024 Sep 10;18(36):24941-24952. doi: 10.1021/acsnano.4c05638. Epub 2024 Aug 27.
Small metal-rich semiconducting quantum dots (QDs) are promising for solid-state lighting and single-photon emission due to their highly tunable yet narrow emission line widths. Nonetheless, the anionic ligands commonly employed to passivate these QDs exert a substantial influence on the optoelectronic characteristics, primarily owing to strong electron-phonon interactions. In this work, we combine time-domain density functional theory and nonadiabatic molecular dynamics to investigate the excited charge carrier dynamics of CdSeX QDs (X = HCOO, OH, Cl, and SH) at ambient conditions. These chemically distinct but regularly used molecular groups influence the dynamic surface-ligand interfacial interactions in Cd-rich QDs, drastically modifying their vibrational characteristics. The strong electron-phonon coupling leads to substantial transient variations at the band edge states. The strength of these interactions closely depends on the physicochemical characteristics of passivating ligands. Consequently, the ligands largely control the nonradiative recombination rates and emission characteristics in these QDs. Our simulations indicate that CdSe(OH) has the fastest nonradiative recombination rate due to the strongest electron-phonon interactions. Conversely, QDs passivated with thiolate or chloride exhibit considerably longer carrier lifetimes and suppressed nonradiative processes. The ligand-controlled electron-phonon interactions further give rise to the broadest and narrowest intrinsic optical line widths for OH and Cl-passivated single QDs, respectively. Obtained computational insights lay the groundwork for designing appropriate passivating ligands on metal-rich QDs, making them suitable for a wide range of applications, from blue LEDs to quantum emitters.
富含金属的小半导体量子点(QDs)因其发射线宽高度可调且窄,在固态照明和单光子发射方面具有广阔前景。尽管如此,常用于钝化这些量子点的阴离子配体对其光电特性有重大影响,主要是由于强烈的电子 - 声子相互作用。在这项工作中,我们结合时域密度泛函理论和非绝热分子动力学,研究了CdSeX量子点(X = HCOO、OH、Cl和SH)在环境条件下的激发电荷载流子动力学。这些化学性质不同但常用的分子基团影响富镉量子点中动态的表面 - 配体界面相互作用,极大地改变了它们的振动特性。强烈的电子 - 声子耦合导致带边态出现大量瞬态变化。这些相互作用的强度密切取决于钝化配体的物理化学特性。因此,配体在很大程度上控制了这些量子点中的非辐射复合速率和发射特性。我们的模拟表明,由于最强的电子 - 声子相互作用,CdSe(OH)具有最快的非辐射复合速率。相反,用硫醇盐或氯化物钝化的量子点表现出长得多的载流子寿命和受抑制的非辐射过程。配体控制的电子 - 声子相互作用分别导致OH和Cl钝化的单个量子点出现最宽和最窄的本征光学线宽。获得的计算见解为在富含金属的量子点上设计合适的钝化配体奠定了基础,使其适用于从蓝色发光二极管到量子发射器的广泛应用。