Suppr超能文献

InP 胶体量子点的窄本征线宽和电子-声子耦合。

Narrow Intrinsic Line Widths and Electron-Phonon Coupling of InP Colloidal Quantum Dots.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Samsung Advanced Institute of Technology, Samsung Electronics, Suwon-si, Gyeonggi-do 16678, Republic of Korea.

出版信息

ACS Nano. 2023 Feb 28;17(4):3598-3609. doi: 10.1021/acsnano.2c10237. Epub 2023 Feb 9.

Abstract

InP quantum dots (QDs) are the material of choice for QD display applications and have been used as active layers in QD light-emitting diodes (QDLEDs) with high efficiency and color purity. Optimizing the color purity of QDs requires understanding mechanisms of spectral broadening. While ensemble-level broadening can be minimized by synthetic tuning to yield monodisperse QD sizes, single QD line widths are broadened by exciton-phonon scattering and fine-structure splitting. Here, using photon-correlation Fourier spectroscopy, we extract average single QD line widths of 50 meV at 293 K for red-emitting InP/ZnSe/ZnS QDs, among the narrowest for colloidal QDs. We measure InP/ZnSe/ZnS single QD emission line shapes at temperatures between 4 and 293 K and model the spectra using a modified independent boson model. We find that inelastic acoustic phonon scattering and fine-structure splitting are the most prominent broadening mechanisms at low temperatures, whereas pure dephasing from elastic acoustic phonon scattering is the primary broadening mechanism at elevated temperatures, and optical phonon scattering contributes minimally across all temperatures. Conversely for CdSe/CdS/ZnS QDs, we find that optical phonon scattering is a larger contributor to the line shape at elevated temperatures, leading to intrinsically broader single-dot line widths than for InP/ZnSe/ZnS. We are able to reconcile narrow low-temperature line widths and broad room-temperature line widths within a self-consistent model that enables parametrization of line width broadening, for different material classes. This can be used for the rational design of more spectrally narrow materials. Our findings reveal that red-emitting InP/ZnSe/ZnS QDs have intrinsically narrower line widths than typically synthesized CdSe QDs, suggesting that these materials could be used to realize QDLEDs with high color purity.

摘要

铟磷量子点(QD)是 QD 显示应用的首选材料,已被用作高效和高色彩纯度的 QD 发光二极管(QDLED)的有源层。优化 QD 的色彩纯度需要了解光谱展宽的机制。虽然通过合成调谐可以将整体水平的展宽最小化,从而产生单分散的 QD 尺寸,但单 QD 的线宽会因激子-声子散射和精细结构分裂而展宽。在这里,我们使用光子相关傅里叶光谱法,在 293 K 下提取出红色发射铟磷/硒化锌/硫化锌 QD 的平均单 QD 线宽为 50 毫电子伏特,这是胶体 QD 中最窄的。我们在 4 到 293 K 的温度下测量铟磷/硒化锌/硫化锌单 QD 发射线形状,并使用改进的独立玻色子模型对光谱进行建模。我们发现,在低温下,非弹性声子散射和精细结构分裂是最主要的展宽机制,而在高温下,纯弛豫来自弹性声子散射是主要的展宽机制,而光学声子散射在所有温度下的贡献都很小。相反,对于 CdSe/CdS/ZnS QD,我们发现光学声子散射在高温下对谱线形状的贡献更大,导致单量子点线宽比铟磷/硒化锌/硫化锌更宽。我们能够在一个自洽的模型中协调窄的低温线宽和宽的室温线宽,该模型能够对不同材料的线宽展宽进行参数化。这可用于设计光谱更窄的材料。我们的发现表明,红色发射铟磷/硒化锌/硫化锌 QD 的线宽比通常合成的 CdSe QD 更窄,这表明这些材料可用于实现具有高色彩纯度的 QDLED。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验