State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China.
Yulin Agricultural Technology Service Center, Yulin, China.
J Sci Food Agric. 2025 Jan 15;105(1):342-352. doi: 10.1002/jsfa.13833. Epub 2024 Aug 27.
This study explored the mechanism of irrigation and nitrogen (N) coupling on spring maize yield and soil greenhouse gas (GHG) emissions, with the objective of achieving water saving, high yield and emission reduction. Field experiments were conducted to analyze the effects of multiple irrigation and N management strategies on GHG emissions and to determine the optimal balance between GHG, water conservation and grain yield. The experiments were conducted on spring maize with three irrigation levels (low, IL; medium, IM; and high, IH) and 4 N application levels (N40, N80, N120 and N160 kg N ha).
The IL treatment exhibited the lowest NO and CO emission fluxes and the lowest CH uptake fluxes. The N40 treatment exhibited the lowest NO and CO emission fluxes and the highest CH uptake flux. Significant positive correlations were observed among NO and CO emission fluxes, CH uptake fluxes, and soil moisture and inorganic N content. Maize yield initially increased and then decreased with rising levels of irrigation and N management. By employing the TOPSIS method to assess yield and greenhouse effects, we identified the IMN120 treatment as optimal given that this treatment achieved the highest yield (14 686.26 kg ha) and water use efficiency (3.51 kg m) while maintaining relatively low global warming potential (573.30 kg CO2 eq ∙ ha) and GHG intensity (0.0390 kg CO2 eq ∙ kg).
Irrigation optimization and N management are key to reducing GHG emissions, enhancing yield, and promoting both the sustainable development of agriculture and environmental protection. © 2024 Society of Chemical Industry.
本研究旨在探索灌溉和氮(N)耦合对春玉米产量和土壤温室气体(GHG)排放的作用机制,以期实现节水、高产和减排。通过田间试验,分析了多种灌溉和 N 管理策略对 GHG 排放的影响,确定了 GHG、节水和粮食产量之间的最佳平衡。本试验以春玉米为研究对象,设置了 3 个灌溉水平(低 IL、中 IM 和高 IH)和 4 个 N 施用量水平(N40、N80、N120 和 N160 kg N ha)。
IL 处理的 NO 和 CO 排放通量最低,CH 吸收通量最低。N40 处理的 NO 和 CO 排放通量最低,CH 吸收通量最高。NO 和 CO 排放通量、CH 吸收通量与土壤水分和无机 N 含量呈显著正相关。玉米产量随灌溉和 N 管理水平的升高先增加后降低。采用 TOPSIS 方法评估产量和温室效应,发现 IMN120 处理是最优的,因为该处理实现了最高产量(14686.26 kg ha)和水分利用效率(3.51 kg m),同时保持了相对较低的全球变暖潜势(573.30 kg CO2 eq ha)和 GHG 强度(0.0390 kg CO2 eq kg)。
灌溉优化和 N 管理是减少 GHG 排放、提高产量、促进农业可持续发展和环境保护的关键。© 2024 化学工业协会。