Granados-Tavera Kevin, Cárdenas-Jirón Gloria
Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Santiago, Chile.
Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia, Colombia.
Dalton Trans. 2024 Oct 22;53(41):16830-16842. doi: 10.1039/d4dt01459f.
Density functional theory (DFT) calculations were performed on the 5,15 meso-positions of nine porphyrin-containing MOFs; Zn(TCPB)-(NMe-ZnP); (HTCPB = 1,2,4,5-tetrakis(4-carboxyphenyl)benzene), (NMe-ZnP = [5,15-bis[(4-pyridyl)-ethynyl]-10,20-bis-(dimethylamine) porphinato]zinc(II)) functionalized with nitrogen-, oxygen-, and sulfur-containing groups to study their effects on the electronic, optical and transport properties of the materials. The properties of these materials have also been investigated by encapsulating fullerene (C) in their pores (C@MOFs). The results indicate that the guest C in the MOF generates high photoconductivity through efficient porphyrin/fullerene donor-acceptor (D-A) interactions, which are facilitated by oxygen and sulfur functionalities. DFT calculations show that C interacts favorably in MOFs due to negative values. Encapsulated C molecules modify the electronic band structure, affecting the conduction band and unoccupied states of MOFs corresponding to C p orbitals. TD-DFT calculations show that incorporating C promotes D-A interactions in MOFs, leading to charge transfer in the near-infrared and visible photoinduced electron transfer (PET) from porphyrins to C. Nonequilibrium Green's function-based calculations for MOFs with sulfur group, with and without C, performed using molecular junctions with Au(111)-based electrodes show increased charge transport for the doped MOF. These insights into tuning electronic/optical properties and controlling charge transfer can aid in the design of new visible/near-infrared MOF-based optoelectronic devices.
对九种含卟啉的金属有机框架材料(MOF)的5,15中位进行了密度泛函理论(DFT)计算;Zn(TCPB)-(NMe-ZnP);(HTCPB = 1,2,4,5-四(4-羧基苯基)苯),(NMe-ZnP = [5,15-双[(4-吡啶基)乙炔基]-10,20-双(二甲胺)卟啉锌(II)])用含氮、氧和硫的基团进行功能化,以研究它们对材料的电子、光学和传输性质的影响。还通过将富勒烯(C)封装在其孔中(C@MOF)来研究这些材料的性质。结果表明,MOF中的客体C通过高效的卟啉/富勒烯供体-受体(D-A)相互作用产生高光导率,而氧和硫官能团促进了这种相互作用。DFT计算表明,由于负值,C在MOF中具有良好的相互作用。封装的C分子改变了电子能带结构,影响了与C p轨道对应的MOF的导带和未占据态。TD-DFT计算表明,掺入C促进了MOF中的D-A相互作用,导致近红外和可见光诱导的从卟啉到C的光致电子转移(PET)中的电荷转移。使用基于Au(111)电极的分子结对含硫基团、有和没有C的MOF进行的基于非平衡格林函数的计算表明,掺杂的MOF的电荷传输增加。这些关于调节电子/光学性质和控制电荷转移的见解有助于设计新型基于MOF的可见/近红外光电器件。