Department of Applied Sciences, Northumbria University, Newcastle-upon-Tyne, NE2 1XE, UK.
School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Stoke-on-Trent, ST4 7QB, UK.
Tissue Eng Regen Med. 2024 Dec;21(8):1141-1151. doi: 10.1007/s13770-024-00666-w. Epub 2024 Aug 27.
Compressive loading of bone causes hydrostatic pressure changes which have been proposed as an osteogenic differentiation stimulus for mesenchymal stem cells (hMSCs). We hypothesised that hMSCs are adapted to differentiate only in response to cyclic hydrostatic pressures above critical thresholds of magnitude and frequency which correspond to physiological levels of anabolic bone loading.
Using a pneumatic-hydrostatic bioreactor, we applied hydrostatic pressure regimes to human hMSCs in 3D collagen hydrogel cultures for 1 h/day over 28 days to determine which levels of pressure and frequency stimulated osteogenesis in vitro.
Stimulation of the 3D cultures with 0-280 kPa cyclic hydrostatic pressure at 1 Hz resulted in up to 75% mineralisation in the hydrogel (without exogenous growth factors), whilst static culture or variations of the regime with either constant high pressure (280 kPa, 0 Hz), low-frequency (0.05 Hz, 280 kPa) or low-magnitude (70 kPa, 1 Hz) stimulation had no osteogenic effects (< 2% mineralisation). Nuclear translocation of YAP was observed following cyclic hydrostatic pressure in mature MLO-A5 osteoblasts but not in hMSCs, suggesting that cyclic hydrostatic pressure activates different mechanotransduction pathways in undifferentiated stem cells and committed osteoblasts.
Hydrostatic pressure is a potent stimulus for differentiating MSC into highly active osteoblasts and may therefore be a versatile tool for translational cell engineering. We have demonstrated that there are minimum levels of force and frequency needed to trigger osteogenesis, i.e. a pressure 'switch', which corresponds to the physiological forces experienced by cells in their native mesenchymal niche. The mechanotransduction mechanisms underpinning these effects are the subject of further study.
骨骼所承受的压缩载荷会引起流体静压力变化,这些变化被认为是间充质干细胞(hMSCs)成骨分化的刺激因素。我们假设 hMSCs 仅适应在幅度和频率超过临界阈值的周期性流体静压力下分化,这些阈值与生理性的骨合成加载水平相对应。
使用气动-流体静力学生物反应器,我们在 3D 胶原水凝胶培养物中每天施加 1 小时的周期性流体静压力,以确定哪些压力和频率水平在体外刺激成骨。
在没有外源性生长因子的情况下,3D 培养物在 1 Hz 时受到 0-280 kPa 周期性流体静压力的刺激,导致水凝胶中的矿化率高达 75%,而静态培养或改变该条件,无论是采用恒定高压(280 kPa,0 Hz)、低频(0.05 Hz,280 kPa)还是低幅度(70 kPa,1 Hz)刺激,均无成骨作用(<2%的矿化)。在成熟的 MLO-A5 成骨细胞中观察到 YAP 的核易位,但在 hMSCs 中未观察到,这表明周期性流体静压力在未分化的干细胞和成骨细胞中激活了不同的机械转导途径。
流体静压是将 MSC 分化为高度活跃的成骨细胞的有效刺激因素,因此可能是细胞转化工程的一种多功能工具。我们已经证明,存在触发成骨作用的最小力和频率水平,即压力“开关”,这与细胞在其天然间充质龛中所经历的生理力相对应。进一步研究的是这些效应的机械转导机制。