Suppr超能文献

基于 WGCNA 的小肿瘤大小乳腺癌患者瘤内转移基因特征和风险评分。

Hub metastatic gene signature and risk score of breast cancer patients with small tumor sizes using WGCNA.

机构信息

School of Public Health, National Defense Medical Center, Taipei City, Taiwan.

Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei City, 114202, Taiwan.

出版信息

Breast Cancer. 2024 Nov;31(6):1114-1129. doi: 10.1007/s12282-024-01627-w. Epub 2024 Aug 27.

Abstract

BACKGROUND

Breast cancer (BC) is the most common cancer in women and accounts for approximately 15% of all cancer deaths among women globally. The underlying mechanism of BC patients with small tumor size and developing distant metastasis (DM) remains elusive in clinical practices.

METHODS

We integrated the gene expression of BCs from ten RNAseq datasets from Gene Expression Omnibus (GEO) database to create a genetic prediction model for distant metastasis-free survival (DMFS) in BC patients with small tumor sizes (≤ 2 cm) using weighted gene co-expression network (WGCNA) analysis and LASSO cox regression.

RESULTS

ABHD11, DDX39A, G3BP2, GOLM1, IL1R1, MMP11, PIK3R1, SNRPB2, and VAV3 were hub metastatic genes identified by WGCNA and used to create a risk score using multivariable Cox regression. At the cut-point value of the median risk score, the high-risk score (≥ median risk score) group had a higher risk of DM than the low-risk score group in the training cohort [hazard ratio (HR) 4.51, p < 0.0001] and in the validation cohort (HR 5.48, p = 0.003). The nomogram prediction model of 3-, 5-, and 7-year DMFS shows good prediction results with C-indices of 0.72-0.76. The enriched pathways were immune regulation and cell-cell signaling. EGFR serves as the hub gene for the protein-protein interaction network of PIK3R1, IL1R1, MMP11, GOLM1, and VAV3.

CONCLUSION

Prognostic gene signature was predictive of DMFS for BCs with small tumor sizes. The protein-protein interaction network of PIK3R1, IL1R1, MMP11, GOLM1, and VAV3 connected by EGFR merits further experiments for elucidating the underlying mechanisms.

摘要

背景

乳腺癌(BC)是女性中最常见的癌症,约占全球女性所有癌症死亡人数的 15%。在临床实践中,肿瘤体积小但发生远处转移(DM)的 BC 患者的潜在机制仍不清楚。

方法

我们整合了来自基因表达综合数据库(GEO)的十个 RNAseq 数据集的 BC 基因表达数据,使用加权基因共表达网络分析(WGCNA)和 LASSO Cox 回归分析,为肿瘤体积≤2cm 的 BC 患者创建无远处转移生存(DMFS)的遗传预测模型。

结果

通过 WGCNA 鉴定出 ABHD11、DDX39A、G3BP2、GOLM1、IL1R1、MMP11、PIK3R1、SNRPB2 和 VAV3 等 8 个关键转移性基因,使用多变量 Cox 回归分析创建风险评分。在风险评分中位数的截断值处,高风险评分(≥中位数风险评分)组在训练队列中(危险比 [HR] 4.51,p<0.0001)和验证队列中(HR 5.48,p=0.003)发生 DM 的风险高于低风险评分组。3 年、5 年和 7 年 DMFS 的列线图预测模型具有 0.72-0.76 的良好预测结果。富集途径为免疫调节和细胞间信号转导。EGFR 是 PIK3R1、IL1R1、MMP11、GOLM1 和 VAV3 的蛋白质-蛋白质相互作用网络的枢纽基因。

结论

预测基因特征可预测肿瘤体积小的 BC 患者的 DMFS。PIK3R1、IL1R1、MMP11、GOLM1 和 VAV3 通过 EGFR 连接的蛋白质-蛋白质相互作用网络值得进一步实验来阐明潜在机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a32/11489208/90a13ad4233d/12282_2024_1627_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验