Suppr超能文献

通过最小的 RGS 结构域对 Gα 或 Gα 信号进行选择性光遗传学抑制会破坏回路功能和回路形成。

Selective optogenetic inhibition of Gα or Gα signaling by minimal RGS domains disrupts circuit functionality and circuit formation.

机构信息

Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia.

Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia.

出版信息

Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2411846121. doi: 10.1073/pnas.2411846121. Epub 2024 Aug 27.

Abstract

Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate an optogenetic tool that disrupts Gα signaling through membrane recruitment of a minimal regulator of G protein signaling (RGS) domain. This approach, Photo-induced Gα Modulator-Inhibition of Gα (PiGM-Iq), exhibited potent and selective inhibition of Gα signaling. Using PiGM-Iq we alter the behavior of and with outcomes consistent with GPCR-Gα disruption. PiGM-Iq changes axon guidance in cultured dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. Furthermore, by altering the minimal RGS domain, we show that this approach is amenable to Gα signaling. Our unique and robust optogenetic Gα inhibiting approaches complement existing neurobiological tools and can be used to investigate the functional effects neuromodulators that signal through GPCR and trimeric G proteins.

摘要

光遗传学技术提供了一种基因靶向、时空精确的方法,可将细胞活动与生理结果相关联。在神经系统中,G 蛋白偶联受体(GPCRs)通过与细胞外配体结合来诱导细胞内信号级联反应,从而发挥重要的神经调节功能。在这项工作中,我们开发并验证了一种光遗传学工具,通过最小的 G 蛋白信号调节因子(RGS)结构域的膜募集来破坏 Gα 信号。这种方法,即光诱导的 Gα 调节剂抑制 Gα(PiGM-Iq),表现出强大且选择性的 Gα 信号抑制作用。使用 PiGM-Iq,我们改变了 Gαq 和 Gα12 的行为,其结果与 GPCR-Gα 破坏一致。PiGM-Iq 改变了培养的背根神经节神经元中对 5-羟色胺的轴突导向。PiGM-Iq 的激活导致斑马鱼胚胎和幼虫的发育缺陷,导致神经元连接和行为改变。此外,通过改变最小的 RGS 结构域,我们表明这种方法适用于 Gα 信号。我们独特而强大的光遗传学 Gα 抑制方法补充了现有的神经生物学工具,可用于研究通过 GPCR 和三聚体 G 蛋白信号传递的神经调质的功能影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf8/11388284/8a9e92578636/pnas.2411846121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验