Suppr超能文献

一种基因编码生物传感器揭示了阿片类药物作用的位置偏向。

A Genetically Encoded Biosensor Reveals Location Bias of Opioid Drug Action.

机构信息

Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA.

Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium.

出版信息

Neuron. 2018 Jun 6;98(5):963-976.e5. doi: 10.1016/j.neuron.2018.04.021. Epub 2018 May 10.

Abstract

Opioid receptors (ORs) precisely modulate behavior when activated by native peptide ligands but distort behaviors to produce pathology when activated by non-peptide drugs. A fundamental question is how drugs differ from peptides in their actions on target neurons. Here, we show that drugs differ in the subcellular location at which they activate ORs. We develop a genetically encoded biosensor that directly detects ligand-induced activation of ORs and uncover a real-time map of the spatiotemporal organization of OR activation in living neurons. Peptide agonists produce a characteristic activation pattern initiated in the plasma membrane and propagating to endosomes after receptor internalization. Drugs produce a different activation pattern by additionally driving OR activation in the somatic Golgi apparatus and Golgi elements extending throughout the dendritic arbor. These results establish an approach to probe the cellular basis of neuromodulation and reveal that drugs distort the spatiotemporal landscape of neuronal OR activation.

摘要

阿片受体(OR)在被天然肽配体激活时能精确调节行为,但在被非肽类药物激活时会扭曲行为,导致病理状态。一个基本问题是,药物与肽类在作用于靶神经元时有何不同。在这里,我们表明,药物在激活 OR 的亚细胞位置上存在差异。我们开发了一种遗传编码的生物传感器,可直接检测配体诱导的 OR 激活,并揭示了活神经元中 OR 激活的时空组织的实时图谱。肽激动剂产生一种特征性的激活模式,该模式从质膜开始,在受体内化后传播到内体。药物通过另外在体细胞高尔基体和延伸到整个树突状分支的高尔基体元件中驱动 OR 激活,产生不同的激活模式。这些结果建立了一种探测神经调节细胞基础的方法,并揭示了药物会扭曲神经元 OR 激活的时空景观。

相似文献

1
A Genetically Encoded Biosensor Reveals Location Bias of Opioid Drug Action.
Neuron. 2018 Jun 6;98(5):963-976.e5. doi: 10.1016/j.neuron.2018.04.021. Epub 2018 May 10.
2
Ligand-dependent spatiotemporal signaling profiles of the μ-opioid receptor are controlled by distinct protein-interaction networks.
J Biol Chem. 2019 Nov 1;294(44):16198-16213. doi: 10.1074/jbc.RA119.008685. Epub 2019 Sep 12.
6
Binding to opioid receptors of enkephalin derivatives taking alpha-helical conformation and its dimer.
Int J Pept Protein Res. 1991 Oct;38(4):378-84. doi: 10.1111/j.1399-3011.1991.tb01517.x.
8
Dynamic mass redistribution as a means to measure and differentiate signaling via opioid and cannabinoid receptors.
Assay Drug Dev Technol. 2011 Aug;9(4):362-72. doi: 10.1089/adt.2010.0347. Epub 2011 Feb 16.

引用本文的文献

1
In vivo measurement of an Apelin gradient with a genetically encoded APLNR conformation biosensor.
Nat Commun. 2025 Jul 21;16(1):6682. doi: 10.1038/s41467-025-61781-3.
3
A calcium-sensing receptor dileucine motif directs internalization to spatially distinct endosomal signaling pathways.
iScience. 2025 May 13;28(6):112651. doi: 10.1016/j.isci.2025.112651. eCollection 2025 Jun 20.
4
Conformational biosensors delineate endosomal G protein regulation by GPCRs.
bioRxiv. 2025 May 13:2025.05.12.653522. doi: 10.1101/2025.05.12.653522.
5
Chemical biology approaches to resolve the subcellular GPCR signaling landscape.
Nat Chem Biol. 2025 Jun 2. doi: 10.1038/s41589-025-01928-x.
6
Chemigenetic kinase biosensors illuminate cell signaling networks.
Nat Biotechnol. 2025 Apr 28. doi: 10.1038/s41587-025-02672-2.
7
Opioid receptors reveal a discrete cellular mechanism of endosomal G protein activation.
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2420623122. doi: 10.1073/pnas.2420623122. Epub 2025 Apr 22.
9
Opioid Analgesics: Rise and Fall of Ligand Biased Signaling and Future Perspectives in the Quest for the Holy Grail.
CNS Drugs. 2025 Jun;39(6):565-581. doi: 10.1007/s40263-025-01172-w. Epub 2025 Apr 1.

本文引用的文献

2
GPCR signalling from within the cell.
Br J Pharmacol. 2018 Nov;175(21):4026-4035. doi: 10.1111/bph.14023. Epub 2017 Oct 3.
3
Functional selectivity of GPCR-directed drug action through location bias.
Nat Chem Biol. 2017 Jul;13(7):799-806. doi: 10.1038/nchembio.2389. Epub 2017 May 29.
4
An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells.
Cell. 2017 Apr 6;169(2):350-360.e12. doi: 10.1016/j.cell.2017.03.022.
5
A PTEN-Regulated Checkpoint Controls Surface Delivery of δ Opioid Receptors.
J Neurosci. 2017 Apr 5;37(14):3741-3752. doi: 10.1523/JNEUROSCI.2923-16.2017. Epub 2017 Mar 6.
6
Nanobodies to Study G Protein-Coupled Receptor Structure and Function.
Annu Rev Pharmacol Toxicol. 2017 Jan 6;57:19-37. doi: 10.1146/annurev-pharmtox-010716-104710. Epub 2016 Dec 7.
7
Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation.
Nature. 2016 Jul 21;535(7612):448-52. doi: 10.1038/nature18636. Epub 2016 Jul 13.
8
Opioid Abuse in Chronic Pain--Misconceptions and Mitigation Strategies.
N Engl J Med. 2016 Mar 31;374(13):1253-63. doi: 10.1056/NEJMra1507771.
9
Structural insights into µ-opioid receptor activation.
Nature. 2015 Aug 20;524(7565):315-21. doi: 10.1038/nature14886. Epub 2015 Aug 5.
10
Effects of endocytosis on receptor-mediated signaling.
Curr Opin Cell Biol. 2015 Aug;35:137-43. doi: 10.1016/j.ceb.2015.05.005. Epub 2015 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验