Suppr超能文献

协同去除生物难降解有机化合物和硝酸盐:耦合光催化和生物降解以提高电子供体的生物可利用性。

Synergistic removal of bio-recalcitrant organic compounds and nitrate: Coupling photocatalysis and biodegradation to enhance the bioavailability of electron donors.

机构信息

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.

出版信息

J Hazard Mater. 2024 Nov 5;479:135605. doi: 10.1016/j.jhazmat.2024.135605. Epub 2024 Aug 22.

Abstract

Nitrate pollution poses significant threats to both aquatic ecosystems and human well-being, particularly due to eutrophication and increased risks of methemoglobinemia. Conventional treatment for nitrate-contaminated wastewater face challenges stemming from limited availability of carbon sources and the adverse impacts of toxins on denitrification processes. This study introduces an innovative Intimately Coupled Photocatalysis and Biodegradation (ICPB) system, which utilizes AgPO/BiTiO, denitrifying sludge, and polyurethane sponge within an anoxic environment. This system demonstrates remarkable efficacy in simultaneously removing bio-recalcitrant organic compounds (such as sulfamethoxazole) and nitrates, surpassing standalone treatment methods. Optimally, the ICPB achieves complete removal of sulfamethoxazole, along with 87.7 % removal of DOC, and 81.8 % reduction in nitrate levels. Its ability to sustain pollutant removal and biological activity over multiple cycles can be attributed to the special formation of biofilm and mineralization of sulfamethoxazole, minimizing both photocatalytic damage and toxic inhibitory effects on microbes. The dominant microbial genera of ICPB system included Castellaniella, Acidovorax, Raoultella, Giesbergeria, and Alicycliphilus. Additionally, the study sheds light on a potential mechanism for the concurrent treatment of recalcitrant organics and nitrates by the ICPB system, presenting a novel and highly effective approach for addressing biologically resistant wastewater.

摘要

硝酸盐污染对水生生态系统和人类健康构成重大威胁,特别是由于富营养化和高铁血红蛋白症风险增加。受污染废水的传统处理方法面临着碳源有限以及毒素对反硝化过程的不利影响等挑战。本研究介绍了一种创新的紧密耦合光催化和生物降解(ICPB)系统,该系统在缺氧环境中利用 AgPO/BiTiO3、脱氮污泥和聚氨酯海绵。该系统在同时去除生物难降解有机化合物(如磺胺甲恶唑)和硝酸盐方面表现出显著的效果,优于单独的处理方法。在最佳条件下,ICPB 可完全去除磺胺甲恶唑,同时去除 87.7%的 DOC 和 81.8%的硝酸盐。其能够在多个循环中维持污染物去除和生物活性,这归因于磺胺甲恶唑的特殊生物膜形成和矿化,最大限度地减少了光催化损伤和对微生物的有毒抑制作用。ICPB 系统中的优势微生物属包括 Castellaniella、Acidovorax、Raoultella、Giesbergeria 和 Alicycliphilus。此外,该研究揭示了 ICPB 系统同时处理难生物降解有机物和硝酸盐的潜在机制,为处理具有生物抗性的废水提供了一种新颖且高效的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验