Suppr超能文献

ChatGPT 大语言模型在社区药房决策支持中的表现。

Performance of the ChatGPT large language model for decision support in community pharmacy.

机构信息

Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA.

出版信息

Br J Clin Pharmacol. 2024 Dec;90(12):3320-3333. doi: 10.1111/bcp.16215. Epub 2024 Aug 27.

Abstract

AIMS

The aim of this study was to assess the ChatGPT-4 (ChatGPT) large language model (LLM) on tasks relevant to community pharmacy.

METHODS

ChatGPT was assessed with community pharmacy-relevant test cases involving drug information retrieval, identifying labelling errors, prescription interpretation, decision-making under uncertainty and multidisciplinary consults. Drug information on rituximab, warfarin, and St. John's wort was queried. The decision-support scenarios consisted of a subject with swollen eyelids and a maculopapular rash in a subject on lisinopril and ferrous sulfate. The multidisciplinary scenarios required the integration of medication management with recommendations for healthy eating and physical activity/exercise.

RESULTS

The responses from ChatGPT for rituximab, warfarin, and St. John's wort were satisfactory and cited drug databases and drug-specific monographs. ChatGPT identified labeling errors related to incorrect medication strength, form, route of administration, unit conversion, and directions. For the patient with inflamed eyelids, the course of action developed by ChatGPT was comparable to the pharmacist's approach. For the patient with the maculopapular rash, both the pharmacist and ChatGPT placed a drug reaction to either lisinopril or ferrous sulfate at the top of the differential. ChatGPT provided customized vaccination requirements for travel to Brazil, guidance on management of drug allergies and recovery from a knee injury. ChatGPT provided satisfactory medication management and wellness information for a diabetic on metformin and semaglutide.

CONCLUSIONS

LLMs have the potential to become a powerful tool in community pharmacy. However, rigorous validation studies across diverse pharmacist queries, drug classes and populations, and engineering to secure patient privacy will be needed to enhance LLM utility.

摘要

目的

本研究旨在评估 ChatGPT-4(ChatGPT)大型语言模型(LLM)在与社区药房相关的任务中的表现。

方法

使用与社区药房相关的测试案例评估 ChatGPT,这些案例涉及药物信息检索、识别标签错误、处方解读、不确定情况下的决策以及多学科咨询。查询了利妥昔单抗、华法林和贯叶连翘的药物信息。决策支持场景包括一名服用赖诺普利和硫酸亚铁的患者出现眼睑肿胀和斑丘疹,以及一名患有多形红斑的患者。多学科场景需要将药物管理与健康饮食和体育锻炼/运动的建议相结合。

结果

ChatGPT 对利妥昔单抗、华法林和贯叶连翘的回答令人满意,并引用了药物数据库和药物专论。ChatGPT 识别出与药物强度、剂型、给药途径、单位转换和用药说明不正确相关的标签错误。对于患有眼睑炎的患者,ChatGPT 制定的行动方案与药剂师的方法相当。对于患有多形红斑的患者,药剂师和 ChatGPT 都将药物反应(可能是赖诺普利或硫酸亚铁引起的)列为鉴别诊断的首位。ChatGPT 为前往巴西旅行提供了定制的疫苗接种要求、药物过敏管理和膝关节损伤康复的指导。ChatGPT 为服用二甲双胍和司美格鲁肽的糖尿病患者提供了满意的药物管理和健康信息。

结论

大型语言模型有可能成为社区药房的有力工具。但是,需要进行严格的验证研究,涵盖不同的药剂师查询、药物类别和人群,以及工程学以确保患者隐私,以提高 LLM 的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验