Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, USA.
Nat Metab. 2024 Aug;6(8):1529-1548. doi: 10.1038/s42255-024-01104-w. Epub 2024 Aug 27.
Cultured cancer cells frequently rely on the consumption of glutamine and its subsequent hydrolysis by glutaminase (GLS). However, this metabolic addiction can be lost in the tumour microenvironment, rendering GLS inhibitors ineffective in the clinic. Here we show that glutamine-addicted breast cancer cells adapt to chronic glutamine starvation, or GLS inhibition, via AMPK-mediated upregulation of the serine synthesis pathway (SSP). In this context, the key product of the SSP is not serine, but α-ketoglutarate (α-KG). Mechanistically, we find that phosphoserine aminotransferase 1 (PSAT1) has a unique capacity for sustained α-KG production when glutamate is depleted. Breast cancer cells with resistance to glutamine starvation or GLS inhibition are highly dependent on SSP-supplied α-KG. Accordingly, inhibition of the SSP prevents adaptation to glutamine blockade, resulting in a potent drug synergism that suppresses breast tumour growth. These findings highlight how metabolic redundancy can be context dependent, with the catalytic properties of different metabolic enzymes that act on the same substrate determining which pathways can support tumour growth in a particular nutrient environment. This, in turn, has practical consequences for therapies targeting cancer metabolism.
培养的癌细胞通常依赖于谷氨酰胺的消耗及其随后被谷氨酰胺酶(GLS)水解。然而,这种代谢成瘾在肿瘤微环境中可能会丧失,使 GLS 抑制剂在临床上无效。在这里,我们表明,谷氨酰胺成瘾的乳腺癌细胞通过 AMPK 介导的丝氨酸合成途径(SSP)的上调来适应慢性谷氨酰胺饥饿或 GLS 抑制。在这种情况下,SSP 的关键产物不是丝氨酸,而是α-酮戊二酸(α-KG)。从机制上讲,我们发现当谷氨酸耗尽时,磷酸丝氨酸转氨酶 1(PSAT1)具有持续产生α-KG 的独特能力。对谷氨酰胺饥饿或 GLS 抑制有抗性的乳腺癌细胞高度依赖 SSP 供应的α-KG。因此,抑制 SSP 可防止对谷氨酰胺阻断的适应,从而产生强烈的药物协同作用,抑制乳腺肿瘤生长。这些发现强调了代谢冗余如何具有上下文依赖性,作用于同一底物的不同代谢酶的催化特性决定了哪些途径可以在特定的营养环境中支持肿瘤生长。这反过来又对针对癌症代谢的治疗产生了实际影响。