Suppr超能文献

DIProT:一个基于深度学习的交互式工具包,用于高效且有效地进行蛋白质设计。

DIProT: A deep learning based interactive toolkit for efficient and effective Protein design.

作者信息

He Jieling, Wu Wenxu, Wang Xiaowo

机构信息

Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China.

出版信息

Synth Syst Biotechnol. 2024 Feb 8;9(2):217-222. doi: 10.1016/j.synbio.2024.01.011. eCollection 2024 Jun.

Abstract

The protein inverse folding problem, designing amino acid sequences that fold into desired protein structures, is a critical challenge in biological sciences. Despite numerous data-driven and knowledge-driven methods, there remains a need for a user-friendly toolkit that effectively integrates these approaches for in-silico protein design. In this paper, we present DIProT, an interactive protein design toolkit. DIProT leverages a non-autoregressive deep generative model to solve the inverse folding problem, combined with a protein structure prediction model. This integration allows users to incorporate prior knowledge into the design process, evaluate designs in silico, and form a virtual design loop with human feedback. Our inverse folding model demonstrates competitive performance in terms of effectiveness and efficiency on TS50 and CATH4.2 datasets, with promising sequence recovery and inference time. Case studies further illustrate how DIProT can facilitate user-guided protein design.

摘要

蛋白质反向折叠问题,即设计能够折叠成所需蛋白质结构的氨基酸序列,是生物科学中的一项关键挑战。尽管有众多数据驱动和知识驱动的方法,但仍需要一个用户友好的工具包,能够有效地整合这些方法以进行计算机辅助蛋白质设计。在本文中,我们展示了DIProT,一个交互式蛋白质设计工具包。DIProT利用非自回归深度生成模型来解决反向折叠问题,并结合了蛋白质结构预测模型。这种整合允许用户将先验知识纳入设计过程,在计算机上评估设计,并通过人工反馈形成一个虚拟设计循环。我们的反向折叠模型在TS50和CATH4.2数据集上的有效性和效率方面表现出具有竞争力的性能,具有良好的序列恢复能力和推理时间。案例研究进一步说明了DIProT如何促进用户指导的蛋白质设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe5/10876589/1de49fbc44a2/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验