Suppr超能文献

通过多种细胞死亡途径的组合预测肝细胞癌的临床预后和药物敏感性。

Prediction of clinical prognosis and drug sensitivity in hepatocellular carcinoma through the combination of multiple cell death pathways.

机构信息

Department of Graduate School, Bengbu Medical University, Bengbu, China.

Department of Hepatobiliary Surgery, The First People's Hospital of Hefei, Hefei, China.

出版信息

Cell Biol Int. 2024 Dec;48(12):1816-1835. doi: 10.1002/cbin.12235. Epub 2024 Aug 27.

Abstract

Hepatocellular carcinoma (HCC) is the sixth most common malignant tumor, highlighting a significant need for reliable predictive models to assess clinical prognosis, disease progression, and drug sensitivity. Recent studies have highlighted the critical role of various programmed cell death pathways, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, entotic cell death, NETotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis, oxeiptosis, and disulfidptosis, in tumor development. Therefore, by investigating these pathways, we aimed to develop a predictive model for HCC prognosis and drug sensitivity. We analyzed transcriptome, single-cell transcriptome, genomic, and clinical information using data from the TCGA-LIHC, GSE14520, GSE45436, and GSE166635 datasets. Machine learning algorithms were used to establish a cell death index (CDI) with seven gene signatures, which was validated across three independent datasets, showing that high CDI correlates with poorer prognosis. Unsupervised clustering revealed three molecular subtypes of HCC with distinct biological processes. Furthermore, a nomogram integrating CDI and clinical information demonstrated good predictive performance. CDI was associated with immune checkpoint genes and tumor microenvironment components using single-cell transcriptome analysis. Drug sensitivity analysis indicated that patients with high CDI may be resistant to oxaliplatin and cisplatin but sensitive to axitinib and sorafenib. In summary, our model offers a precise prediction of clinical outcomes and drug sensitivity for patients with HCC, providing valuable insights for personalized treatment strategies.

摘要

肝细胞癌(HCC)是第六大常见恶性肿瘤,这突显了对可靠预测模型的迫切需求,以评估临床预后、疾病进展和药物敏感性。最近的研究强调了各种程序性细胞死亡途径的关键作用,包括细胞凋亡、坏死性凋亡、细胞焦亡、铁死亡、铜死亡、内噬性细胞死亡、NET 细胞死亡、Parthanatos、溶酶体依赖性细胞死亡、自噬依赖性细胞死亡、碱损伤细胞死亡、氧化损伤细胞死亡和二硫键损伤细胞死亡,在肿瘤发展中。因此,通过研究这些途径,我们旨在开发一种用于 HCC 预后和药物敏感性的预测模型。我们使用来自 TCGA-LIHC、GSE45436 和 GSE166635 数据集的转录组、单细胞转录组、基因组和临床信息进行分析。使用机器学习算法建立了一个包含七个基因特征的细胞死亡指数(CDI),并在三个独立数据集上进行了验证,结果表明高 CDI 与预后不良相关。无监督聚类揭示了 HCC 的三种分子亚型,具有不同的生物学过程。此外,整合 CDI 和临床信息的诺莫图显示出良好的预测性能。通过单细胞转录组分析,CDI 与免疫检查点基因和肿瘤微环境成分相关。药物敏感性分析表明,CDI 较高的患者可能对奥沙利铂和顺铂耐药,但对阿昔替尼和索拉非尼敏感。总之,我们的模型为 HCC 患者的临床结局和药物敏感性提供了精确预测,为个体化治疗策略提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验