Suppr超能文献

AWGC2023恶病质共识作为预测中国癌症患者预后和负担的重要工具。

AWGC2023 cachexia consensus as a valuable tool for predicting prognosis and burden in Chinese patients with cancer.

作者信息

Xie Hailun, Wei Lishuang, Ruan Guotian, Zhang Heyang, Shi Jinyu, Lin Shiqi, Liu Chenan, Liu Xiaoyue, Zheng Xin, Chen Yue, Chen Junqiang, Shi Hanping

机构信息

Department of Gastrointestinal Gland Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, China.

Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.

出版信息

J Cachexia Sarcopenia Muscle. 2024 Oct;15(5):2084-2093. doi: 10.1002/jcsm.13555. Epub 2024 Aug 27.

Abstract

BACKGROUND

The Asian Working Group for Cachexia (AWGC) proposed the first consensus report on diagnostic criteria for cachexia in Asians in 2023. However, the current consensus lacks cohort evidence to validate its effectiveness and practicality. We aimed to explore the value of the AWGC2023 criteria for predicting the prognosis and medical burden of patients with cancer through a retrospective post hoc cross-sectional analysis of the Investigation on Nutrition Status and its Clinical Outcome of Common Cancers (INSCOC) project in China.

METHODS

Cox regression analyses were performed to assess the independent association between cachexia and long-term survival. We utilized C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), inflammatory burden index (IBI), albumin (ALB) and Glasgow prognostic score (GPS) as diagnostic markers for cachexia, designating them as CRP-based cachexia, NLR-based cachexia, IBI-based cachexia, ALB-based cachexia and GPS-based cachexia, respectively. Additionally, we diagnosed cachexia using body mass index (BMI) cutoff values of 18.5, 20, 21 and 22 kg/m, respectively, and subsequently compared their prognostic predictive value through Harrell's concordance index (C-index). Logistic regression models were used to assess the association between cachexia and medical burden.

RESULTS

A total of 5426 patients with cancer were enrolled in this study. Cox regression analysis confirmed that cachexia based on the AWGC2023 criteria was an independent predictor of long-term survival in patients with cancer. Patients with cachexia had significantly poorer long-term survival than patients without cachexia (66.4% vs. 49.7%, P < 0.001). Inflammatory biomarker-based cachexia was as an independent predictor of prognosis in patients with cancer, with inflammatory burden index (IBI)-based cachexia demonstrating the optimal prognostic discriminatory ability. The C-index indicated that cachexia based on BMI cutoff values of 18.5, 20, and 22 kg/m did not perform as well as a BMI cutoff value of 21 kg/m. Logistic regression models revealed that using the AWGC2023 criteria, patients with cachexia had a 16.6% higher risk of prolonged hospitalization and a 16.0% higher risk of high medical expenses than patients without cachexia.

CONCLUSION

The AWGC2023 criteria represent a valuable tool for predicting survival and medical burden among Chinese patients with cancer. Encouragement for further validation in other Asian populations is warranted for the AWGC2023 criteria.

摘要

背景

亚洲恶病质工作组(AWGC)于2023年发布了首份关于亚洲人恶病质诊断标准的共识报告。然而,目前的共识缺乏队列证据来验证其有效性和实用性。我们旨在通过对中国常见癌症营养状况及其临床结局调查(INSCOC)项目进行回顾性事后横断面分析,探讨AWGC2023标准对预测癌症患者预后和医疗负担的价值。

方法

进行Cox回归分析以评估恶病质与长期生存之间的独立关联。我们将C反应蛋白(CRP)、中性粒细胞与淋巴细胞比值(NLR)、炎症负担指数(IBI)、白蛋白(ALB)和格拉斯哥预后评分(GPS)用作恶病质的诊断标志物,分别将其指定为基于CRP的恶病质、基于NLR的恶病质、基于IBI的恶病质、基于ALB的恶病质和基于GPS的恶病质。此外,我们分别使用体重指数(BMI)临界值18.5、20、21和22kg/m²诊断恶病质,随后通过Harrell一致性指数(C指数)比较它们的预后预测价值。使用逻辑回归模型评估恶病质与医疗负担之间的关联。

结果

本研究共纳入5426例癌症患者。Cox回归分析证实,基于AWGC2023标准的恶病质是癌症患者长期生存的独立预测因素。恶病质患者的长期生存率明显低于无恶病质患者(66.4%对49.7%,P<0.001)。基于炎症生物标志物的恶病质是癌症患者预后的独立预测因素,其中基于炎症负担指数(IBI)的恶病质显示出最佳的预后判别能力。C指数表明,基于BMI临界值18.5、20和22kg/m²的恶病质的表现不如基于BMI临界值21kg/m²的恶病质。逻辑回归模型显示,使用AWGC2023标准,恶病质患者住院时间延长的风险比无恶病质患者高16.6%,医疗费用高的风险比无恶病质患者高16.0%。

结论

AWGC2023标准是预测中国癌症患者生存和医疗负担的有价值工具。有必要鼓励在其他亚洲人群中对AWGC2023标准进行进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecc4/11446680/44807b7f6cf3/JCSM-15-2084-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验