Suppr超能文献

利用机器学习建立三阴乳腺癌新辅助治疗患者炎症状态预后指数并进行临床应用

Establishment and clinical application of a prognostic index for inflammatory status in triple-negative breast cancer patients undergoing neoadjuvant therapy using machine learning.

作者信息

Sun Hao, Liang Jian, Xue Shuanglong, Zhang Xiaoyan, Ding Mingqiang, Zhu Jingna, Nanding Abiyasi, Liu Tianyi, Lou Ge, Gao Yue, Li Yingjie, Zhong Lei

机构信息

Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150023, China.

Department of Pathology, The Affiliated Cancer Hospital of Harbin Medical University, Harbin, 150086, China.

出版信息

BMC Cancer. 2024 Dec 20;24(1):1559. doi: 10.1186/s12885-024-13354-8.

Abstract

OBJECTIVE

This study aims to establish a new prognostic index using machine learning models to predict the clinical outcomes of triple-negative breast cancer (TNBC) patients receiving neoadjuvant therapy.

METHODS

In this study, we collected data from the electronic medical records system of Harbin Medical University Cancer Hospital to establish a training set of 501 breast cancer patients who received neoadjuvant therapy from January 2017 to December 2021. Additionally, we collected data from Harbin Medical University Affiliated Cancer Hospital, Harbin Medical University Affiliated Second Hospital, and Harbin Medical University Affiliated Sixth Hospital to establish a validation set of 1533 patients during the same period. All patients underwent blood tests, and the following inflammatory and immune indices were calculated for each patient: neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), systemic immune-inflammatory index (SII), systemic inflammatory response index (SIRI), and advanced lung cancer inflammation index (ALI). The observed outcomes included Disease-free survival (DFS) and overall survival (OS). Survival analysis was performed using Kaplan‒Meier survival curves, Cox survival analysis, propensity score matching analysis (PSM), and a nomogram to comprehensively investigate the impact of inflammatory status on patient survival.

RESULTS

The training set comprised 501 patients with a mean age of 48.63 (9.41) years, while the validation set comprised 1533 patients with a mean age of 49.01 (9.51) years. The formula for ANLR established through Lasso regression analysis on the training set is: ANLR index = NLR - 0.04 × ALB (g/L). In both the training and validation sets, ANLR was significantly associated with patient DFS and OS (all P < 0.05). Additionally, ANLR was found to be an independent prognostic factor in this study. PSM analysis further confirmed its significant correlation with patient DFS and OS (76 cases vs. 76 cases, χ2 = 2.179, P = 0.001 and χ2 = 2.063, P = 0.002). The nomogram containing ANLR also demonstrated high prognostic value. The C-index for the nomogram in the training set was 0.742 (0.619-0.886) for DFS and 0.758 (0.607-0.821) for OS, while in the validation set, the C-index was 0.733 (0.655-0.791) for DFS and 0.714 (0.634-0.800) for OS.

CONCLUSION

ANLR was associated with the prognosis of TNBC patients receiving neoadjuvant therapy and could identify high-risk postoperative patients.

摘要

目的

本研究旨在使用机器学习模型建立一种新的预后指标,以预测接受新辅助治疗的三阴性乳腺癌(TNBC)患者的临床结局。

方法

在本研究中,我们从哈尔滨医科大学附属肿瘤医院的电子病历系统收集数据,建立了一个由501例在2017年1月至2021年12月期间接受新辅助治疗的乳腺癌患者组成的训练集。此外,我们从哈尔滨医科大学附属肿瘤医院、哈尔滨医科大学附属第二医院和哈尔滨医科大学附属第六医院收集数据,建立了同期1533例患者的验证集。所有患者均接受血液检查,并为每位患者计算以下炎症和免疫指标:中性粒细胞与淋巴细胞比值(NLR)、血小板与淋巴细胞比值(PLR)、单核细胞与淋巴细胞比值(MLR)、全身免疫炎症指数(SII)、全身炎症反应指数(SIRI)和晚期肺癌炎症指数(ALI)。观察到的结局包括无病生存期(DFS)和总生存期(OS)。使用Kaplan-Meier生存曲线、Cox生存分析、倾向评分匹配分析(PSM)和列线图进行生存分析,以全面研究炎症状态对患者生存的影响。

结果

训练集包括501例患者,平均年龄为48.63(9.41)岁,而验证集包括1533例患者,平均年龄为49.01(9.51)岁。通过对训练集进行Lasso回归分析建立的ANLR公式为:ANLR指数 = NLR - 0.04 × ALB(g/L)。在训练集和验证集中,ANLR均与患者的DFS和OS显著相关(所有P < 0.05)。此外,在本研究中发现ANLR是一个独立的预后因素。PSM分析进一步证实了其与患者DFS和OS的显著相关性(76例对76例,χ2 = 2.179,P = 0.001和χ2 = 2.063,P = 0.002)。包含ANLR的列线图也显示出较高的预后价值。训练集中列线图的DFS的C指数为0.742(0.619 - 0.886),OS的C指数为0.758(0.607 - 0.821),而在验证集中,DFS的C指数为0.733(0.655 - 0.791),OS的C指数为0.714(0.634 - 0.800)。

结论

ANLR与接受新辅助治疗TNBC患者的预后相关,并且可以识别术后高危患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4c9/11660978/6614fda33121/12885_2024_13354_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验