Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany.
Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany.
Phys Chem Chem Phys. 2024 Sep 11;26(35):23228-23239. doi: 10.1039/d4cp03021d.
Bio-nanohybrid devices featuring natural photocatalysts bound to a nanostructure hold great promise in the search for sustainable energy conversion. One of the major challenges of integrating biological systems is protecting them against harsh environmental conditions while retaining, or ideally enhancing their photophysical properties. In this mainly computational work we investigate an assembly of cyanobacterial photosystem I (PS I) embedded in a metal-organic framework (MOF), namely the zeolitic imidazolate framework ZIF-8. This complex has been reported experimentally [Bennett , , 2019, , 94] but so far the molecular interactions between PS I and the MOF remained elusive. We show absorption spectroscopy that PS I remains intact throughout the encapsulation-release cycle. Molecular dynamics (MD) simulations further confirm that the encapsulation has no noticeable structural impact on the photosystem. However, the MOF building blocks frequently coordinate to the Mg ions of chlorophylls in the periphery of the antenna complex. High-level quantum mechanical calculations reveal charge-transfer interactions, which affect the excitonic network and thereby may reversibly change the fluorescence properties of PS I. Nevertheless, our results highlight the stability of PS I in the MOF, as the reaction center remains unimpeded by the heterogeneous environment, paving the way for applications in the foreseeable future.
具有与纳米结构结合的天然光催化剂的生物纳米混合器件在寻找可持续能源转换方面具有很大的前景。将生物系统集成的主要挑战之一是保护它们免受恶劣环境条件的影响,同时保留(理想情况下增强)它们的光物理性质。在这项主要的计算工作中,我们研究了一种嵌入金属有机骨架(MOF)中的蓝藻光合系统 I(PS I)的组装体,即沸石咪唑骨架 ZIF-8。该复合物已在实验中得到报道[Bennett 等人,2019 年,第 94 卷],但到目前为止,PS I 和 MOF 之间的分子相互作用仍不清楚。我们通过吸收光谱表明,PS I 在整个封装-释放循环中保持完整。分子动力学(MD)模拟进一步证实封装对光系统没有明显的结构影响。然而,MOF 的构建块经常与天线复合物外围的叶绿素的 Mg 离子配位。高级量子力学计算揭示了电荷转移相互作用,这会影响激子网络,从而可能可逆地改变 PS I 的荧光性质。然而,我们的结果突出了 PS I 在 MOF 中的稳定性,因为反应中心不受异质环境的阻碍,为可预见的未来的应用铺平了道路。