Peschel Martin T, Kussmann Jörg, Ochsenfeld Christian, de Vivie-Riedle Regina
Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany.
Phys Chem Chem Phys. 2024 Sep 11;26(35):23256-23263. doi: 10.1039/d4cp02492c.
Unlocking the full potential of Lewis acid catalysis for photochemical transformations requires a comprehensive understanding of the ultrafast dynamics of substrate-Lewis acid complexes. In a previous article [Peschel , 2021, , 10155], time-resolved spectroscopy supported by static calculations revealed that the Lewis acid remains attached during the relaxation of the model complex cyclohexenone-BF. In contrast to the experimental observation, surface-hopping dynamics in the gas phase predicted ultrafast heterolytic dissociation. We attributed the discrepancy to missing solvent interactions. Thus, in this work, we present an interface between the SHARC and FermiONs++ program packages, which enables us to investigate the ultrafast dynamics of cyclohexenone-BF in an explicit solvent environment. Our simulations demonstrate that the solvent prevents the dissociation of the complex, leading to an intriguing dissociation-reassociation mechanism. Comparing the dynamics with and without triplet states highlights their role in the relaxation process and shows that the Lewis acid inhibits intersystem crossing. These findings provide a clear picture of the relaxation process, which may aid in designing future Lewis acid catalysts for photochemical applications. They underscore that an explicit solvent model is required to describe relaxation processes in weakly bound states, as energy transfer to the solvent is crucial for the system to reach its minimum geometries.
要充分发挥路易斯酸催化光化学反应的潜力,需要全面了解底物-路易斯酸配合物的超快动力学。在之前的一篇文章[佩舍尔,2021,,10155]中,静态计算支持的时间分辨光谱表明,在模型配合物环己烯酮-BF的弛豫过程中,路易斯酸保持附着状态。与实验观察结果相反,气相中的表面跳跃动力学预测了超快异裂解离。我们将这种差异归因于缺失的溶剂相互作用。因此,在这项工作中,我们展示了SHARC和FermiONs++程序包之间的一个接口,它使我们能够在明确的溶剂环境中研究环己烯酮-BF的超快动力学。我们的模拟表明,溶剂阻止了配合物的解离,导致了一种有趣的解离-重新结合机制。比较有三重态和无三重态时的动力学突出了它们在弛豫过程中的作用,并表明路易斯酸抑制了系间窜越。这些发现为弛豫过程提供了清晰的图景,这可能有助于设计未来用于光化学应用的路易斯酸催化剂。它们强调,需要一个明确的溶剂模型来描述弱束缚态下的弛豫过程,因为能量转移到溶剂对系统达到其最小几何构型至关重要。