Mausenberger Sascha, Polonius Severin, Mai Sebastian, González Leticia
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
J Chem Theory Comput. 2025 Sep 23;21(18):8994-9008. doi: 10.1021/acs.jctc.5c00878. Epub 2025 Sep 10.
We present a novel, flexible framework for electronic structure interfaces designed for nonadiabatic dynamics simulations, implemented in Python 3 using concepts of object-oriented programming. This framework streamlines the development of new interfaces by providing a reusable and extendable code base. It supports the computation of energies, gradients, various couplings─like spin-orbit couplings, nonadiabatic couplings, and transition dipole moments─and other properties for an arbitrary number of states with any multiplicities and charges. A key innovation within this framework is the introduction of hybrid interfaces, which can use other interfaces in a general hierarchical manner. Hybrid interfaces are capable of using one or more child interfaces to implement multiscale approaches, such as quantum mechanics/molecular mechanics where different child interfaces are assigned to different regions of a system. The concept of hybrid interfaces can be extended through nesting, where hybrid parent interfaces use hybrid child interfaces to easily setup complex workflows without the need for additional coding. We demonstrate the versatility of hybrid interfaces with two examples: one at the method level and one at the workflow level. The first example showcases the numerical differentiation of wave function overlaps, implemented as a hybrid interface and used to optimize a minimum-energy conical intersection with numerical nonadiabatic couplings. The second example presents an adaptive learning workflow, where nested hybrid interfaces are used to iteratively refine a machine learning model. This work lays the groundwork for more modular, flexible, and scalable software design in excited-state dynamics.
我们提出了一种新颖、灵活的电子结构接口框架,专为非绝热动力学模拟而设计,使用面向对象编程的概念在Python 3中实现。该框架通过提供一个可重复使用和可扩展的代码库,简化了新接口的开发。它支持计算能量、梯度、各种耦合(如自旋轨道耦合、非绝热耦合和跃迁偶极矩)以及任意数量具有任意多重性和电荷的状态的其他属性。该框架的一个关键创新是引入了混合接口,它可以以通用的分层方式使用其他接口。混合接口能够使用一个或多个子接口来实现多尺度方法,例如量子力学/分子力学,其中不同的子接口被分配到系统的不同区域。混合接口的概念可以通过嵌套来扩展,其中混合父接口使用混合子接口来轻松设置复杂的工作流程,而无需额外编码。我们用两个例子展示了混合接口的通用性:一个在方法层面,一个在工作流程层面。第一个例子展示了波函数重叠的数值微分,实现为一个混合接口,并用于通过数值非绝热耦合优化最小能量锥形交叉点。第二个例子展示了一个自适应学习工作流程,其中嵌套的混合接口用于迭代优化机器学习模型。这项工作为激发态动力学中更模块化、灵活和可扩展的软件设计奠定了基础。