Schmiedtchen Marco, Maisuls Iván, Siera Hannah, Balszuweit Jan, Wölper Christoph, Giese Michael, Haberhauer Gebhard, Strassert Cristian A, Voskuhl Jens
Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45117, Essen, Germany.
Institute for Inorganic and Analytical Chemistry, CeNTech, CiMIC, SoN, University of Münster, Heisenbergstraße 11, 48149, Münster, Germany.
Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414326. doi: 10.1002/anie.202414326. Epub 2024 Oct 29.
In this contribution, we explored the photocyclization of thioethers to highly substituted dibenzothiophenes (DBT) using solely UV-light without any need for additives. This cost-effective, robust and environmentally friendly approach yielded phosphorescent compounds, which were characterized by X-ray crystallography and state-of-the-art photophysical methods. The resulting DBTs feature ultralong photoluminescence lifetimes and quantum yields close to unity in frozen glassy matrices. The reaction mechanism was elucidated in detail through a combination of quantum chemical calculations and experimental results, providing evidence that triplet states are involved in the cyclization process. Additionally, the photoreaction can also be induced within materials. For this purpose, the precursors were integrated into polymer films or polymer resins suitable for 3D printing. Irradiation of these polymeric objects allows motifs with ultralong phosphorescence to be irreversibly inscribed through the proceeding photocyclization. The in situ photogeneration of DBTs from aromatic thioethers overcomes the observed incompatibilities regarding solubility in polymer resins for 3D printing.
在本论文中,我们探索了仅使用紫外光将硫醚光环化生成高度取代的二苯并噻吩(DBT)的方法,无需任何添加剂。这种经济高效、稳健且环保的方法产生了磷光化合物,通过X射线晶体学和先进的光物理方法对其进行了表征。所得的DBT在冷冻玻璃基质中具有超长的光致发光寿命和接近1的量子产率。通过量子化学计算和实验结果相结合的方式详细阐明了反应机理,提供了三线态参与环化过程的证据。此外,光反应也可以在材料内部引发。为此,将前体整合到适用于3D打印的聚合物薄膜或聚合物树脂中。对这些聚合物物体进行辐照,通过进行中的光环化反应,可以不可逆地刻写具有超长磷光的图案。从芳族硫醚原位光生成DBT克服了在3D打印聚合物树脂中观察到的溶解性不相容问题。