Suppr超能文献

相似文献

1
A versatile knee exoskeleton mitigates quadriceps fatigue in lifting, lowering, and carrying tasks.
Sci Robot. 2024 Sep 18;9(94):eadr8282. doi: 10.1126/scirobotics.adr8282.
2
Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1387-1394. doi: 10.1109/ICORR.2017.8009442.
4
Design and evaluation of the OmniSuit: A passive occupational exoskeleton for back and shoulder support.
Appl Ergon. 2024 Oct;120:104332. doi: 10.1016/j.apergo.2024.104332. Epub 2024 Jun 14.
8
In-Field Training of a Passive Back Exoskeleton Changes the Biomechanics of Logistic Workers.
IISE Trans Occup Ergon Hum Factors. 2024 Jul-Sep;12(3):149-161. doi: 10.1080/24725838.2024.2359371. Epub 2024 Jun 13.
10
Force Sense of the Knee Not Affected by Fatiguing the Knee Extensors and Flexors.
J Sport Rehabil. 2016 May;25(2):155-63. doi: 10.1123/jsr.2014-0298. Epub 2015 Aug 26.

引用本文的文献

1
Human-Interface Dynamics of Knee Exoskeletons with Lateral and Anteroposterior Attachment.
IEEE Int Conf Rehabil Robot. 2025 May;2025:648-655. doi: 10.1109/ICORR66766.2025.11062962.
2
A Task-Agnostic Knee Exoskeleton for Reducing Osteoarthritis Pain Across Activities of Daily Life: A Pilot Study.
IEEE Int Conf Rehabil Robot. 2025 May;2025:1437-1443. doi: 10.1109/ICORR66766.2025.11063102.
3
A Task-Agnostic Hip Exoskeleton for Osteoarthritis Pain Relief: Energetic Control Across Activities of Daily Life.
IEEE Int Conf Rehabil Robot. 2025 May;2025:1299-1306. doi: 10.1109/ICORR66766.2025.11063157.
5
The Design and Application of an Assistive Hip Joint Exoskeleton for Tower Climbing.
Sensors (Basel). 2024 Nov 25;24(23):7513. doi: 10.3390/s24237513.

本文引用的文献

1
Estimating human joint moments unifies exoskeleton control, reducing user effort.
Sci Robot. 2024 Mar 20;9(88):eadi8852. doi: 10.1126/scirobotics.adi8852.
2
Passive knee exoskeletons in functional tasks: Biomechanical effects of a coil-spring on squats.
Wearable Technol. 2021 Jun 8;2:e7. doi: 10.1017/wtc.2021.6. eCollection 2021.
3
Versatile and non-versatile occupational back-support exoskeletons: A comparison in laboratory and field studies.
Wearable Technol. 2021 Sep 21;2:e12. doi: 10.1017/wtc.2021.9. eCollection 2021.
4
Real-Time Gait Phase and Task Estimation for Controlling a Powered Ankle Exoskeleton on Extremely Uneven Terrain.
IEEE Trans Robot. 2023 Jun;39(3):2170-2182. doi: 10.1109/tro.2023.3235584. Epub 2023 Jan 23.
5
6
Personalizing exoskeleton assistance while walking in the real world.
Nature. 2022 Oct;610(7931):277-282. doi: 10.1038/s41586-022-05191-1. Epub 2022 Oct 12.
7
Enhancing Voluntary Motion with Modular, Backdrivable, Powered Hip and Knee Orthoses.
IEEE Robot Autom Lett. 2022 Jul;7(3):6155-6162. doi: 10.1109/LRA.2022.3145580. Epub 2022 Jan 25.
8
Reducing Squat Physical Effort Using Personalized Assistance From an Ankle Exoskeleton.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:1786-1795. doi: 10.1109/TNSRE.2022.3186692. Epub 2022 Jul 4.
10
Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications.
IEEE Trans Biomed Eng. 2022 Oct;69(10):3234-3242. doi: 10.1109/TBME.2022.3165547. Epub 2022 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验