University of Michigan, Ann Arbor, MI, USA.
Sci Robot. 2024 Sep 18;9(94):eadr8282. doi: 10.1126/scirobotics.adr8282.
The quadriceps are particularly susceptible to fatigue during repetitive lifting, lowering, and carrying (LLC), affecting worker performance, posture, and ultimately lower-back injury risk. Although robotic exoskeletons have been developed and optimized for specific use cases like lifting-lowering, their controllers lack the versatility or customizability to target critical muscles across many fatiguing tasks. Here, we present a task-adaptive knee exoskeleton controller that automatically modulates virtual springs, dampers, and gravity and inertia compensation to assist squatting, level walking, and ramp and stairs ascent/descent. Unlike end-to-end neural networks, the controller is composed of predictable, bounded components with interpretable parameters that are amenable to data-driven optimization for biomimetic assistance and subsequent application-specific tuning, for example, maximizing quadriceps assistance over multiterrain LLC. When deployed on a backdrivable knee exoskeleton, the assistance torques holistically reduced quadriceps effort across multiterrain LLC tasks (significantly except for level walking) in 10 human users without user-specific calibration. The exoskeleton also significantly improved fatigue-induced deficits in time-based performance and posture during repetitive lifting-lowering. Last, the system facilitated seamless task transitions and garnered a high effectiveness rating postfatigue over a multiterrain circuit. These findings indicate that this versatile control framework can target critical muscles across multiple tasks, specifically mitigating quadriceps fatigue and its deleterious effects.
股四头肌在重复性的举升、降低和搬运(LLC)过程中特别容易疲劳,这会影响工人的表现、姿势,最终增加下背部受伤的风险。尽管已经开发出了针对特定用途(如升降)的机器人外骨骼,并对其进行了优化,但它们的控制器缺乏通用性或可定制性,无法针对许多疲劳任务中的关键肌肉进行靶向治疗。在这里,我们提出了一种任务自适应膝关节外骨骼控制器,它可以自动调节虚拟弹簧、阻尼器和重力以及惯性补偿,以辅助深蹲、水平行走以及斜坡和楼梯的上升/下降。与端到端神经网络不同,该控制器由可预测、有界的组件组成,具有可解释的参数,这些参数可通过数据驱动的仿生辅助优化和随后的特定于应用的调整来实现,例如,在多地形 LLC 中最大化股四头肌的辅助效果。当将其部署在可反向驱动的膝关节外骨骼上时,该辅助扭矩在 10 名人类使用者中整体降低了多地形 LLC 任务中的股四头肌用力(除了水平行走外,差异显著),而无需使用者特定的校准。外骨骼还显著改善了重复性升降过程中因疲劳导致的时间性能和姿势缺陷。最后,该系统在多地形电路中实现了无缝任务转换,并在疲劳后获得了很高的有效性评分。这些发现表明,这种通用的控制框架可以针对多个任务中的关键肌肉,特别是减轻股四头肌疲劳及其有害影响。