Suppr超能文献

一种通用的膝关节外骨骼可减轻举升、降低和搬运任务中的股四头肌疲劳。

A versatile knee exoskeleton mitigates quadriceps fatigue in lifting, lowering, and carrying tasks.

机构信息

University of Michigan, Ann Arbor, MI, USA.

出版信息

Sci Robot. 2024 Sep 18;9(94):eadr8282. doi: 10.1126/scirobotics.adr8282.

Abstract

The quadriceps are particularly susceptible to fatigue during repetitive lifting, lowering, and carrying (LLC), affecting worker performance, posture, and ultimately lower-back injury risk. Although robotic exoskeletons have been developed and optimized for specific use cases like lifting-lowering, their controllers lack the versatility or customizability to target critical muscles across many fatiguing tasks. Here, we present a task-adaptive knee exoskeleton controller that automatically modulates virtual springs, dampers, and gravity and inertia compensation to assist squatting, level walking, and ramp and stairs ascent/descent. Unlike end-to-end neural networks, the controller is composed of predictable, bounded components with interpretable parameters that are amenable to data-driven optimization for biomimetic assistance and subsequent application-specific tuning, for example, maximizing quadriceps assistance over multiterrain LLC. When deployed on a backdrivable knee exoskeleton, the assistance torques holistically reduced quadriceps effort across multiterrain LLC tasks (significantly except for level walking) in 10 human users without user-specific calibration. The exoskeleton also significantly improved fatigue-induced deficits in time-based performance and posture during repetitive lifting-lowering. Last, the system facilitated seamless task transitions and garnered a high effectiveness rating postfatigue over a multiterrain circuit. These findings indicate that this versatile control framework can target critical muscles across multiple tasks, specifically mitigating quadriceps fatigue and its deleterious effects.

摘要

股四头肌在重复性的举升、降低和搬运(LLC)过程中特别容易疲劳,这会影响工人的表现、姿势,最终增加下背部受伤的风险。尽管已经开发出了针对特定用途(如升降)的机器人外骨骼,并对其进行了优化,但它们的控制器缺乏通用性或可定制性,无法针对许多疲劳任务中的关键肌肉进行靶向治疗。在这里,我们提出了一种任务自适应膝关节外骨骼控制器,它可以自动调节虚拟弹簧、阻尼器和重力以及惯性补偿,以辅助深蹲、水平行走以及斜坡和楼梯的上升/下降。与端到端神经网络不同,该控制器由可预测、有界的组件组成,具有可解释的参数,这些参数可通过数据驱动的仿生辅助优化和随后的特定于应用的调整来实现,例如,在多地形 LLC 中最大化股四头肌的辅助效果。当将其部署在可反向驱动的膝关节外骨骼上时,该辅助扭矩在 10 名人类使用者中整体降低了多地形 LLC 任务中的股四头肌用力(除了水平行走外,差异显著),而无需使用者特定的校准。外骨骼还显著改善了重复性升降过程中因疲劳导致的时间性能和姿势缺陷。最后,该系统在多地形电路中实现了无缝任务转换,并在疲劳后获得了很高的有效性评分。这些发现表明,这种通用的控制框架可以针对多个任务中的关键肌肉,特别是减轻股四头肌疲劳及其有害影响。

相似文献

1
A versatile knee exoskeleton mitigates quadriceps fatigue in lifting, lowering, and carrying tasks.
Sci Robot. 2024 Sep 18;9(94):eadr8282. doi: 10.1126/scirobotics.adr8282.
2
Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1387-1394. doi: 10.1109/ICORR.2017.8009442.
4
Design and evaluation of the OmniSuit: A passive occupational exoskeleton for back and shoulder support.
Appl Ergon. 2024 Oct;120:104332. doi: 10.1016/j.apergo.2024.104332. Epub 2024 Jun 14.
8
In-Field Training of a Passive Back Exoskeleton Changes the Biomechanics of Logistic Workers.
IISE Trans Occup Ergon Hum Factors. 2024 Jul-Sep;12(3):149-161. doi: 10.1080/24725838.2024.2359371. Epub 2024 Jun 13.
10
Force Sense of the Knee Not Affected by Fatiguing the Knee Extensors and Flexors.
J Sport Rehabil. 2016 May;25(2):155-63. doi: 10.1123/jsr.2014-0298. Epub 2015 Aug 26.

引用本文的文献

1
Human-Interface Dynamics of Knee Exoskeletons with Lateral and Anteroposterior Attachment.
IEEE Int Conf Rehabil Robot. 2025 May;2025:648-655. doi: 10.1109/ICORR66766.2025.11062962.
2
A Task-Agnostic Knee Exoskeleton for Reducing Osteoarthritis Pain Across Activities of Daily Life: A Pilot Study.
IEEE Int Conf Rehabil Robot. 2025 May;2025:1437-1443. doi: 10.1109/ICORR66766.2025.11063102.
3
A Task-Agnostic Hip Exoskeleton for Osteoarthritis Pain Relief: Energetic Control Across Activities of Daily Life.
IEEE Int Conf Rehabil Robot. 2025 May;2025:1299-1306. doi: 10.1109/ICORR66766.2025.11063157.
5
The Design and Application of an Assistive Hip Joint Exoskeleton for Tower Climbing.
Sensors (Basel). 2024 Nov 25;24(23):7513. doi: 10.3390/s24237513.

本文引用的文献

1
Estimating human joint moments unifies exoskeleton control, reducing user effort.
Sci Robot. 2024 Mar 20;9(88):eadi8852. doi: 10.1126/scirobotics.adi8852.
2
Passive knee exoskeletons in functional tasks: Biomechanical effects of a coil-spring on squats.
Wearable Technol. 2021 Jun 8;2:e7. doi: 10.1017/wtc.2021.6. eCollection 2021.
3
Versatile and non-versatile occupational back-support exoskeletons: A comparison in laboratory and field studies.
Wearable Technol. 2021 Sep 21;2:e12. doi: 10.1017/wtc.2021.9. eCollection 2021.
4
Real-Time Gait Phase and Task Estimation for Controlling a Powered Ankle Exoskeleton on Extremely Uneven Terrain.
IEEE Trans Robot. 2023 Jun;39(3):2170-2182. doi: 10.1109/tro.2023.3235584. Epub 2023 Jan 23.
5
6
Personalizing exoskeleton assistance while walking in the real world.
Nature. 2022 Oct;610(7931):277-282. doi: 10.1038/s41586-022-05191-1. Epub 2022 Oct 12.
7
Enhancing Voluntary Motion with Modular, Backdrivable, Powered Hip and Knee Orthoses.
IEEE Robot Autom Lett. 2022 Jul;7(3):6155-6162. doi: 10.1109/LRA.2022.3145580. Epub 2022 Jan 25.
8
Reducing Squat Physical Effort Using Personalized Assistance From an Ankle Exoskeleton.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:1786-1795. doi: 10.1109/TNSRE.2022.3186692. Epub 2022 Jul 4.
10
Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications.
IEEE Trans Biomed Eng. 2022 Oct;69(10):3234-3242. doi: 10.1109/TBME.2022.3165547. Epub 2022 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验