Suppr超能文献

通过自然形态的复制与收缩式微型化实现的生物结构纳米光子学

Bioarchitectonic Nanophotonics by Replication and Systolic Miniaturization of Natural Forms.

作者信息

Papachristopoulou Konstantina, Vainos Nikolaos A

机构信息

Photonics Nanotechnology Research Laboratory-PNRL, Department of Materials Science, University of Patras, 26504 Patras, Greece.

出版信息

Biomimetics (Basel). 2024 Aug 13;9(8):487. doi: 10.3390/biomimetics9080487.

Abstract

The mimesis of biological mechanisms by artificial devices constitutes the modern, rapidly expanding, multidisciplinary biomimetics sector. In the broader bioinspiration perspective, however, bioarchitectures may perform independent functions without necessarily mimicking their biological generators. In this paper, we explore such notions and demonstrate three-dimensional photonics by the exact replication of insect organs using ultra-porous silica aerogels. The subsequent conformal systolic transformation yields their miniaturized affine 'clones' having higher mass density and refractive index. Focusing on the paradigms of , the compound eye of the hornet and the of the scarab , we fabricate their aerogel replicas and derivative clones and investigate their photonic functionalities. Ultralight aerogel microlens arrays are proven to be functional photonic devices having a focal length f ~ 1000 μm and f-number f/30 in the visible spectrum. Stepwise systolic transformation yields denser and affine functional elements, ultimately fused silica clones, exhibiting strong focusing properties due to their very short focal length of f ~ 35 μm and f/3.5. The fabricated transparent aerogel and xerogel replicas of demonstrate a remarkable optical waveguiding performance, delivering light to their sub-100 nm nanotips. Dense fused silica conical clones deliver light through sub-50 nm nanotips, enabling nanoscale light-matter interactions. Super-resolution bioarchitectonics offers new and alternative tools and promises novel developments and applications in nanophotonics and other nanotechnology sectors.

摘要

人工装置对生物机制的模仿构成了现代、快速发展的多学科仿生领域。然而,从更广泛的生物启发角度来看,生物结构可能执行独立功能,而不一定模仿其生物原型。在本文中,我们探讨了这些概念,并通过使用超多孔二氧化硅气凝胶精确复制昆虫器官来展示三维光子学。随后的共形收缩变换产生了质量密度和折射率更高的小型化仿射“克隆体”。以黄蜂的复眼和金龟子的[此处原文缺失相关内容]等范例为重点,我们制作了它们的气凝胶复制品和衍生克隆体,并研究了它们的光子功能。超轻气凝胶微透镜阵列被证明是在可见光谱中焦距f约为1000μm且f数为f/30的功能性光子器件。逐步收缩变换产生了密度更高且仿射的功能元件,最终是熔融石英克隆体,由于其极短的焦距f约为35μm且f/3.5而表现出强聚焦特性。所制作的透明气凝胶和干凝胶复制品展示了卓越的光波导性能,将光传输到其亚100nm的纳米尖端。致密的熔融石英锥形克隆体通过亚50nm的纳米尖端传输光,实现纳米级光与物质的相互作用。超分辨率生物结构学提供了新的和替代的工具,并有望在纳米光子学和其他纳米技术领域实现新的发展和应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e6e/11351569/6d1ef71e673e/biomimetics-09-00487-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验