Suppr超能文献

基于YOLOv5-RACF模型的苹果采摘机器人

Apple-Harvesting Robot Based on the YOLOv5-RACF Model.

作者信息

Zhu Fengwu, Zhang Weijian, Wang Suyu, Jiang Bo, Feng Xin, Zhao Qinglai

机构信息

College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China.

Kunyu Intelligent Control (Jilin) Technology Co., Ltd., Changchun 130118, China.

出版信息

Biomimetics (Basel). 2024 Aug 14;9(8):495. doi: 10.3390/biomimetics9080495.

Abstract

To address the issue of automated apple harvesting in orchards, we propose a YOLOv5-RACF algorithm for identifying apples and calculating apple diameters. This algorithm employs the robot operating dystem (ROS) to control the robot's locomotion system, Lidar mapping, and navigation, as well as the robotic arm's posture and grasping operations, achieving automated apple harvesting and placement. The tests were conducted in an actual orchard environment. The algorithm model achieved an average apple detection accuracy (mAP@0.5) of 98.748% and a (mAP@0.5:0.95) of 90.02%. The time to calculate the diameter of one apple was 0.13 s, with a measurement accuracy within an error range of 1-3 mm. The robot takes an average of 9 s to pick an apple and return to the initial pose. These results demonstrate the system's efficiency and reliability in real agricultural environments.

摘要

为解决果园苹果自动化采摘问题,我们提出了一种用于识别苹果并计算苹果直径的YOLOv5-RACF算法。该算法采用机器人操作系统(ROS)来控制机器人的运动系统、激光雷达测绘和导航,以及机械臂的姿态和抓取操作,实现苹果的自动化采摘和放置。测试在实际果园环境中进行。该算法模型的苹果平均检测准确率(mAP@0.5)达到98.748%,(mAP@0.5:0.95)为90.02%。计算一个苹果直径的时间为0.13秒,测量精度在1-3毫米的误差范围内。机器人平均需要9秒来采摘一个苹果并返回初始姿态。这些结果证明了该系统在实际农业环境中的效率和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/11353041/ceac521b8291/biomimetics-09-00495-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验