Suppr超能文献

一种具有黄金正弦扰动和种群再生机制的改进二进制海象优化器用于解决特征选择问题。

An Improved Binary Walrus Optimizer with Golden Sine Disturbance and Population Regeneration Mechanism to Solve Feature Selection Problems.

作者信息

Geng Yanyu, Li Ying, Deng Chunyan

机构信息

College of Computer Science and Technology, Jilin University, Changchun 130012, China.

Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China.

出版信息

Biomimetics (Basel). 2024 Aug 18;9(8):501. doi: 10.3390/biomimetics9080501.

Abstract

Feature selection (FS) is a significant dimensionality reduction technique in machine learning and data mining that is adept at managing high-dimensional data efficiently and enhancing model performance. Metaheuristic algorithms have become one of the most promising solutions in FS owing to their powerful search capabilities as well as their performance. In this paper, the novel improved binary walrus optimizer (WO) algorithm utilizing the golden sine strategy, elite opposition-based learning (EOBL), and population regeneration mechanism (BGEPWO) is proposed for FS. First, the population is initialized using an iterative chaotic map with infinite collapses (ICMIC) chaotic map to improve the diversity. Second, a safe signal is obtained by introducing an adaptive operator to enhance the stability of the WO and optimize the trade-off between exploration and exploitation of the algorithm. Third, BGEPWO innovatively designs a population regeneration mechanism to continuously eliminate hopeless individuals and generate new promising ones, which keeps the population moving toward the optimal solution and accelerates the convergence process. Fourth, EOBL is used to guide the escape behavior of the walrus to expand the search range. Finally, the golden sine strategy is utilized for perturbing the population in the late iteration to improve the algorithm's capacity to evade local optima. The BGEPWO algorithm underwent evaluation on 21 datasets of different sizes and was compared with the BWO algorithm and 10 other representative optimization algorithms. The experimental results demonstrate that BGEPWO outperforms these competing algorithms in terms of fitness value, number of selected features, and 1- in most datasets. The proposed algorithm achieves higher accuracy, better feature reduction ability, and stronger convergence by increasing population diversity, continuously balancing exploration and exploitation processes and effectively escaping local optimal traps.

摘要

特征选择(FS)是机器学习和数据挖掘中一种重要的降维技术,它擅长高效管理高维数据并提升模型性能。由于其强大的搜索能力和性能,元启发式算法已成为FS中最具前景的解决方案之一。本文提出了一种利用黄金正弦策略、基于精英反向学习(EOBL)和种群再生机制的新型改进二进制海象优化器(WO)算法(BGEPWO)用于特征选择。首先,使用具有无限崩塌的迭代混沌映射(ICMIC)混沌映射初始化种群以提高多样性。其次,通过引入自适应算子获得安全信号,以增强WO的稳定性并优化算法在探索和利用之间的权衡。第三,BGEPWO创新性地设计了种群再生机制,不断淘汰无望的个体并生成新的有希望的个体,这使种群朝着最优解移动并加速收敛过程。第四,EOBL用于引导海象的逃逸行为以扩大搜索范围。最后,在迭代后期利用黄金正弦策略对种群进行扰动,以提高算法规避局部最优的能力。BGEPWO算法在21个不同大小的数据集上进行了评估,并与BWO算法和其他10种代表性优化算法进行了比较。实验结果表明,在大多数数据集中,BGEPWO在适应度值、所选特征数量和1方面均优于这些竞争算法。所提出的算法通过增加种群多样性、不断平衡探索和利用过程以及有效逃离局部最优陷阱,实现了更高的准确率、更好的特征约简能力和更强的收敛性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2743/11352133/f3e82cf9fc00/biomimetics-09-00501-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验