Jamali Armin, Knoerlein Robert, Mishra Dushyant Bhagwan, Sheikholeslami Seyed Alireza, Woias Peter, Goldschmidtboeing Frank
Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany.
Laboratory for the Design of Microsystems, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany.
Biomimetics (Basel). 2024 Aug 21;9(8):505. doi: 10.3390/biomimetics9080505.
Soft grippers, a rapidly growing subfield of soft robotics, utilize compliant and flexible materials capable of conforming to various shapes. This feature enables them to exert gentle yet, if required, strong gripping forces. In this study, we elaborate on the material selection and fabrication process of gripping fingers based on the dielectric elastomer actuation technique. We study the effects of mixing the silicone elastomer with a silicone thinner on the performance of the actuators. Inspired by nature, where the motion of end-effectors such as soft limbs or fingers is, in many cases, directed by a stiff skeleton, we utilize backbones for translating the planar actuation into a bending motion. Thus, the finger does not need any rigid frame or pre-stretch, as in many other DEA approaches. The idea and function of the backbone strategy are demonstrated by finite element method simulations with COMSOL Multiphysics 6.5. The paper describes the full methodology from material choice and characterization, design, and simulation to characterization to enable future developments based on our approach. Finally, we present the performance of these actuators in a gripper demonstrator setup. The developed actuators bend up to 68.3° against gravity, and the gripper fingers hold up to 10.3 g against gravity under an actuation voltage of 8 kV.
软抓手是软机器人技术中一个快速发展的子领域,它使用能够贴合各种形状的柔顺且灵活的材料。这一特性使它们能够施加轻柔但必要时也很强的抓握力。在本研究中,我们详细阐述了基于介电弹性体驱动技术的抓握手指的材料选择和制造过程。我们研究了将硅橡胶弹性体与硅橡胶稀释剂混合对致动器性能的影响。受自然界的启发,在自然界中,诸如柔软肢体或手指等末端执行器的运动在许多情况下是由坚硬的骨骼引导的,我们利用主干将平面驱动转化为弯曲运动。因此,与许多其他介电弹性体致动方法不同,这种手指不需要任何刚性框架或预拉伸。主干策略的理念和功能通过使用COMSOL Multiphysics 6.5进行的有限元方法模拟得到了证明。本文描述了从材料选择与表征、设计、模拟到表征的完整方法,以便基于我们的方法实现未来的发展。最后,我们在一个抓手演示装置中展示了这些致动器的性能。所开发的致动器在重力作用下可弯曲至68.3°,在8 kV的驱动电压下,抓手手指在重力作用下可承受高达10.3 g的重量。