Suppr超能文献

利用拷贝数变异数据和神经网络预测癌症转移起源在精度上有所权衡的情况下实现了较高的曲线下面积值。

Using Copy Number Variation Data and Neural Networks to Predict Cancer Metastasis Origin Achieves High Area under the Curve Value with a Trade-Off in Precision.

作者信息

Mickael Michel-Edwar, Kubick Norwin, Atanasov Atanas G, Martinek Petr, Horbańczuk Jarosław Olav, Floretes Nikko, Michal Michael, Vanecek Tomas, Paszkiewicz Justyna, Sacharczuk Mariusz, Religa Piotr

机构信息

Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland.

Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany.

出版信息

Curr Issues Mol Biol. 2024 Aug 1;46(8):8301-8319. doi: 10.3390/cimb46080490.

Abstract

The accurate identification of the primary tumor origin in metastatic cancer cases is crucial for guiding treatment decisions and improving patient outcomes. Copy number alterations (CNAs) and copy number variation (CNV) have emerged as valuable genomic markers for predicting the origin of metastases. However, current models that predict cancer type based on CNV or CNA suffer from low AUC values. To address this challenge, we employed a cutting-edge neural network approach utilizing a dataset comprising CNA profiles from twenty different cancer types. We developed two workflows: the first evaluated the performance of two deep neural networks-one ReLU-based and the other a 2D convolutional network. In the second workflow, we stratified cancer types based on anatomical and physiological classifications, constructing shallow neural networks to differentiate between cancer types within the same cluster. Both approaches demonstrated high AUC values, with deep neural networks achieving a precision of 60%, suggesting a mathematical relationship between CNV type, location, and cancer type. Our findings highlight the potential of using CNA/CNV to aid pathologists in accurately identifying cancer origins with accessible clinical tests.

摘要

在转移性癌症病例中准确识别原发性肿瘤起源对于指导治疗决策和改善患者预后至关重要。拷贝数改变(CNAs)和拷贝数变异(CNV)已成为预测转移起源的有价值的基因组标记。然而,当前基于CNV或CNA预测癌症类型的模型的曲线下面积(AUC)值较低。为应对这一挑战,我们采用了一种前沿的神经网络方法,利用一个包含来自二十种不同癌症类型的CNA图谱的数据集。我们开发了两种工作流程:第一种评估了两个深度神经网络的性能——一个基于修正线性单元(ReLU),另一个是二维卷积网络。在第二种工作流程中,我们根据解剖学和生理学分类对癌症类型进行分层,构建浅层神经网络以区分同一簇内的癌症类型。两种方法都展示了较高的AUC值,深度神经网络达到了60%的精度,表明CNV类型、位置和癌症类型之间存在数学关系。我们的研究结果突出了使用CNA/CNV通过可及的临床检测帮助病理学家准确识别癌症起源的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd5c/11352492/ca1f044e6599/cimb-46-00490-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验