Suppr超能文献

CNApp,一种用于拷贝数改变定量分析和综合分析揭示临床意义的工具。

CNApp, a tool for the quantification of copy number alterations and integrative analysis revealing clinical implications.

机构信息

Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Universitat de Barcelona, Barcelona, Spain.

Liver Cancer Translational Research Group, Liver Unit, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Universitat de Barcelona, Barcelona, Spain.

出版信息

Elife. 2020 Jan 15;9:e50267. doi: 10.7554/eLife.50267.

Abstract

Somatic copy number alterations (CNAs) are a hallmark of cancer, but their role in tumorigenesis and clinical relevance remain largely unclear. Here, we developed CNApp, a web-based tool that allows a comprehensive exploration of CNAs by using purity-corrected segmented data from multiple genomic platforms. CNApp generates genome-wide profiles, computes CNA scores for broad, focal and global CNA burdens, and uses machine learning-based predictions to classify samples. We applied CNApp to the TCGA pan-cancer dataset of 10,635 genomes showing that CNAs classify cancer types according to their tissue-of-origin, and that each cancer type shows specific ranges of broad and focal CNA scores. Moreover, CNApp reproduces recurrent CNAs in hepatocellular carcinoma and predicts colon cancer molecular subtypes and microsatellite instability based on broad CNA scores and discrete genomic imbalances. In summary, CNApp facilitates CNA-driven research by providing a unique framework to identify relevant clinical implications. CNApp is hosted at https://tools.idibaps.org/CNApp/.

摘要

体细胞拷贝数改变(CNAs)是癌症的一个标志,但它们在肿瘤发生中的作用和临床相关性在很大程度上仍不清楚。在这里,我们开发了 CNApp,这是一个基于网络的工具,允许使用来自多个基因组平台的纯度校正的分段数据全面探索 CNAs。CNApp 生成全基因组图谱,计算广泛、局灶和全局 CNA 负担的 CNA 评分,并使用基于机器学习的预测对样本进行分类。我们将 CNApp 应用于 TCGA 泛癌症数据集的 10635 个基因组,结果表明 CNA 根据其组织来源对癌症类型进行分类,并且每种癌症类型都显示出广泛和局灶性 CNA 评分的特定范围。此外,CNApp 在肝细胞癌中重现了复发性 CNA,并根据广泛的 CNA 评分和离散的基因组失衡预测结直肠癌的分子亚型和微卫星不稳定性。总之,CNApp 通过提供一个独特的框架来识别相关的临床意义,促进了 CNA 驱动的研究。CNApp 可在 https://tools.idibaps.org/CNApp/ 上访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0fc/7010409/2d0000a7b431/elife-50267-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验