Head Louise C, Fosado Yair A G, Marenduzzo Davide, Shendruk Tyler N
School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA.
Soft Matter. 2024 Sep 18;20(36):7157-7173. doi: 10.1039/d4sm00436a.
Colloids dispersed in nematic liquid crystals form topological composites in which colloid-associated defects mediate interactions while adhering to fundamental topological constraints. Better realising the promise of such materials requires numerical methods that model nematic inclusions in dynamic and complex scenarios. We employ a mesoscale approach for simulating colloids as mobile surfaces embedded in a fluctuating nematohydrodynamic medium to study the kinetics of colloidal entanglement. In addition to reproducing far-field interactions, topological properties of disclination loops are resolved to reveal their metastable states and topological transitions during relaxation towards ground state. The intrinsic hydrodynamic fluctuations distinguish formerly unexplored far-from-equilibrium disclination states, including configurations with localised positive winding profiles. The adaptability and precision of this numerical approach offers promising avenues for studying the dynamics of colloids and topological defects in designed and out-of-equilibrium situations.
分散在向列型液晶中的胶体形成拓扑复合材料,其中与胶体相关的缺陷在遵循基本拓扑约束的同时介导相互作用。要更好地实现此类材料的前景,需要采用数值方法来模拟动态和复杂场景中的向列型内含物。我们采用一种中尺度方法,将胶体模拟为嵌入波动的线虫流体动力学介质中的可移动表面,以研究胶体缠结的动力学。除了再现远场相互作用外,还解析了位错环的拓扑性质,以揭示它们在向基态弛豫过程中的亚稳态和拓扑转变。固有的流体动力学涨落区分了以前未探索的远离平衡的位错状态,包括具有局部正缠绕轮廓的构型。这种数值方法的适应性和精确性为研究设计和非平衡情况下胶体和拓扑缺陷的动力学提供了有前景的途径。