Suppr超能文献

拓扑驱动的向列型胶体缠结的集体动力学

Topology-driven collective dynamics of nematic colloidal entanglement.

作者信息

Jiang Jinghua, Akomolafe Oluwafemi Isaac, Wang Xinyu, Asilehan Zhawure, Tang Wentao, Zhang Jing, Chen Zijun, Wang Ruijie, Ranabhat Kamal, Zhang Rui, Peng Chenhui

机构信息

Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152.

出版信息

Proc Natl Acad Sci U S A. 2024 Sep 10;121(37):e2402395121. doi: 10.1073/pnas.2402395121. Epub 2024 Sep 4.

Abstract

Entanglement in a soft condensed matter system is enabled in the form of entangled disclination lines by using colloidal particles in nematic liquid crystals. These topological excitations are manifested as colloidal entanglement at equilibrium. How to further utilize nonequilibrium disclination lines to manipulate colloidal entanglement remains a nontrivial and challenging task. In this work, we use experiments and simulations to demonstrate the reconfigurations of nematic colloidal entanglement in light-driven spatiotemporal evolutions of disclination lines. Colloidal entanglement can sense subtle changes in the topological structures of disclination lines and realize chirality conversion. This conversion is manifested as the "domino effect" of the collective rotation of colloids in the disclination lines. By programming the topological patterns and the geometry of the disclination lines, colloidal entanglement can be assembled and split. More remarkably, a double-helix entangled structure can be formed by controlling the changes in the morphology of the disclination lines. Thus, this work will provide opportunities to program colloidal composites for smart materials and micromachines.

摘要

通过在向列型液晶中使用胶体粒子,软凝聚态物质系统中的纠缠以缠结的位错线形式得以实现。这些拓扑激发在平衡状态下表现为胶体纠缠。如何进一步利用非平衡位错线来操纵胶体纠缠仍然是一项重要且具有挑战性的任务。在这项工作中,我们通过实验和模拟证明了在光驱动的位错线时空演化中向列型胶体纠缠的重新配置。胶体纠缠能够感知位错线拓扑结构的细微变化并实现手性转换。这种转换表现为位错线中胶体集体旋转的“多米诺效应”。通过对拓扑图案和位错线的几何形状进行编程,可以组装和拆分胶体纠缠。更值得注意的是,通过控制位错线形态的变化可以形成双螺旋纠缠结构。因此,这项工作将为设计用于智能材料和微机器的胶体复合材料提供机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/856d/11406232/69f66d5680b2/pnas.2402395121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验