Plačková Klára, Bureš Petr, Lysak Martin A, Zedek František
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic.
CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
Ann Bot. 2024 Dec 31;134(6):1067-1076. doi: 10.1093/aob/mcae149.
Genome size is influenced by natural selection and genetic drift acting on variations from polyploidy and repetitive DNA sequences. We hypothesized that centromere drive, where centromeres compete for inclusion in the functional gamete during meiosis, may also affect genome and chromosome size. This competition occurs in asymmetric meiosis, where only one of the four meiotic products becomes a gamete. If centromere drive influences chromosome size evolution, it may also impact post-polyploid diploidization, where a polyploid genome is restructured to function more like a diploid through chromosomal rearrangements, including fusions. We tested if plant lineages with asymmetric meiosis exhibit faster chromosome size evolution compared to those with only symmetric meiosis, which lack centromere drive as all four meiotic products become gametes. We also examined if positive selection on centromeric histone H3 (CENH3), a protein that can suppress centromere drive, is more frequent in these asymmetric lineages.
We analysed plant groups with different meiotic modes: asymmetric in gymnosperms and angiosperms, and symmetric in bryophytes, lycophytes and ferns. We selected species based on available CENH3 gene sequences and chromosome size data. Using Ornstein-Uhlenbeck evolutionary models and phylogenetic regressions, we assessed the rates of chromosome size evolution and the frequency of positive selection on CENH3 in these clades.
Our analyses showed that clades with asymmetric meiosis have a higher frequency of positive selection on CENH3 and increased rates of chromosome size evolution compared to symmetric clades.
Our findings support the hypothesis that centromere drive accelerates chromosome and genome size evolution, potentially also influencing the process of post-polyploid diploidization. We propose a model which in a single framework helps explain the stability of chromosome size in symmetric lineages (bryophytes, lycophytes and ferns) and its variability in asymmetric lineages (gymnosperms and angiosperms), providing a foundation for future research in plant genome evolution.
基因组大小受自然选择和作用于多倍体及重复DNA序列变异的遗传漂变影响。我们推测,着丝粒驱动(即着丝粒在减数分裂过程中竞争进入功能性配子)可能也会影响基因组和染色体大小。这种竞争发生在不对称减数分裂中,此时四个减数分裂产物中只有一个成为配子。如果着丝粒驱动影响染色体大小进化,那么它可能也会影响多倍体后二倍体化过程,即多倍体基因组通过包括融合在内的染色体重排进行重组,使其功能更类似于二倍体。我们测试了与仅具有对称减数分裂(所有四个减数分裂产物都成为配子,不存在着丝粒驱动)的植物谱系相比,具有不对称减数分裂的植物谱系是否表现出更快的染色体大小进化。我们还研究了对着丝粒组蛋白H3(CENH3,一种可抑制着丝粒驱动的蛋白质)的正选择在这些不对称谱系中是否更频繁。
我们分析了具有不同减数分裂模式的植物类群:裸子植物和被子植物为不对称减数分裂,苔藓植物、石松植物和蕨类植物为对称减数分裂。我们根据可用的CENH3基因序列和染色体大小数据选择物种。使用奥恩斯坦 - 乌伦贝克进化模型和系统发育回归,我们评估了这些类群中染色体大小进化的速率以及对CENH3的正选择频率。
我们的分析表明,与对称类群相比,具有不对称减数分裂的类群对CENH3的正选择频率更高,染色体大小进化速率更快。
我们的研究结果支持着丝粒驱动加速染色体和基因组大小进化这一假设,这可能也会影响多倍体后二倍体化过程。我们提出了一个模型,该模型在单一框架内有助于解释对称谱系(苔藓植物、石松植物和蕨类植物)中染色体大小的稳定性及其在不对称谱系(裸子植物和被子植物)中的变异性,为未来植物基因组进化研究奠定了基础。