Suppr超能文献

用于生物成像和持续抗生素递送的 MOF 改性微辊。

MOF-Modified Microrollers for Bioimaging and Sustained Antibiotic Delivery.

机构信息

Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

出版信息

ACS Appl Mater Interfaces. 2024 Sep 11;16(36):47163-47177. doi: 10.1021/acsami.4c08535. Epub 2024 Aug 28.

Abstract

Central nervous system (CNS) infections caused by neurosurgery or intrathecal injection of contaminated cerebrospinal fluid are a common and difficult complication. Drug-delivery microrobots are among the latest solutions proposed for antibacterial applications. However, there is a lack of research into developing microrobots with the ability to sustain antibody delivery while can move efficiently in the CNS. Here, biocompatible antibacterial metal-organic framework (MOF)-modified microrollers (MMRs) to combat CNS infections are proposed. The MMRs are iron-based metal-organic framework (NH-MIL-101(Fe)) modified for enhanced adsorption and Fe/Al coated for magnetic actuation and biocompatibility. The MMRs have demonstrated a faster and unhindered magnetically actuated motion on the uneven biological tissue surface in an organ-on-a-chip that mimicked the CNS compared to it on smooth surface. CFD results consistently align with the experimental findings. The MMRs can be loaded with rhodamine 6G for bioimaging, allowing them to be imaged through sections of the main human tissues by fluorescence microscopy, or tetracycline hydrochloride for antibiotic delivery, allowing them to inhibit the growth of biofilms by sustained release of antibiotics for 9 days. This study provides a strategy to integrate high-capacity adsorption material with magnetically actuated locomotion for long-term targeted antibacterial applications in biological environments.

摘要

中枢神经系统(CNS)感染是由神经外科手术或鞘内注射污染的脑脊液引起的常见且棘手的并发症。药物输送微机器人是最新提出的用于抗菌应用的解决方案之一。然而,在开发具有持续抗体输送能力同时能够在 CNS 中高效移动的微机器人方面,研究还很缺乏。在这里,提出了用于治疗 CNS 感染的生物相容抗菌金属有机骨架(MOF)修饰的微滚轮(MMR)。MMR 是经过修饰的基于铁的金属有机骨架(NH-MIL-101(Fe)),用于增强吸附,以及 Fe/Al 涂层用于磁驱动和生物相容性。与在光滑表面上相比,MMR 在模拟 CNS 的器官芯片上的不平坦生物组织表面上表现出更快、更无阻的磁驱动运动。CFD 结果与实验结果一致。MMR 可以加载若丹明 6G 进行生物成像,通过荧光显微镜可以对其进行主要人体组织切片的成像,或者加载盐酸四环素进行抗生素输送,通过抗生素的持续释放抑制生物膜的生长,持续 9 天。这项研究提供了一种策略,即将大容量吸附材料与磁驱动运动相结合,用于生物环境中的长期靶向抗菌应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验