基于随机森林回归器的电力系统故障位置和持续时间检测方法。

Random Forest Regressor-Based Approach for Detecting Fault Location and Duration in Power Systems.

机构信息

School of Electrical and Computer Science, University of North Dakota, Grand Forks, ND 58202, USA.

Electricity Infrastructure and Buildings Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.

出版信息

Sensors (Basel). 2022 Jan 8;22(2):458. doi: 10.3390/s22020458.

Abstract

Power system failures or outages due to short-circuits or "faults" can result in long service interruptions leading to significant socio-economic consequences. It is critical for electrical utilities to quickly ascertain fault characteristics, including location, type, and duration, to reduce the service time of an outage. Existing fault detection mechanisms (relays and digital fault recorders) are slow to communicate the fault characteristics upstream to the substations and control centers for action to be taken quickly. Fortunately, due to availability of high-resolution phasor measurement units (PMUs), more event-driven solutions can be captured in real time. In this paper, we propose a data-driven approach for determining fault characteristics using samples of fault trajectories. A random forest regressor (RFR)-based model is used to detect real-time fault location and its duration simultaneously. This model is based on combining multiple uncorrelated trees with state-of-the-art boosting and aggregating techniques in order to obtain robust generalizations and greater accuracy without overfitting or underfitting. Four cases were studied to evaluate the performance of RFR: 1. Detecting fault location (case 1), 2. Predicting fault duration (case 2), 3. Handling missing data (case 3), and 4. Identifying fault location and length in a real-time streaming environment (case 4). A comparative analysis was conducted between the RFR algorithm and state-of-the-art models, including deep neural network, Hoeffding tree, neural network, support vector machine, decision tree, naive Bayesian, and K-nearest neighborhood. Experiments revealed that RFR consistently outperformed the other models in detection accuracy, prediction error, and processing time.

摘要

由于短路或“故障”导致的电力系统故障或停电可能导致长时间的服务中断,从而带来重大的社会经济后果。对于电力公司来说,快速确定故障特征(包括位置、类型和持续时间)以减少停电服务时间至关重要。现有的故障检测机制(继电器和数字故障记录器)在向上游变电站和控制中心快速传达故障特征方面速度较慢,以便采取快速行动。幸运的是,由于高分辨率相量测量单元(PMU)的可用性,更多的事件驱动解决方案可以实时捕获。在本文中,我们提出了一种使用故障轨迹样本确定故障特征的数据驱动方法。基于随机森林回归器(RFR)的模型用于同时检测实时故障位置及其持续时间。该模型基于结合多个不相关的树,使用最新的提升和聚合技术,以获得稳健的泛化和更高的准确性,而不会过度拟合或欠拟合。研究了四个案例来评估 RFR 的性能:1. 检测故障位置(案例 1),2. 预测故障持续时间(案例 2),3. 处理缺失数据(案例 3),4. 在实时流环境中识别故障位置和长度(案例 4)。对 RFR 算法和最先进的模型(包括深度神经网络、Hoeffding 树、神经网络、支持向量机、决策树、朴素贝叶斯和 K-最近邻)进行了比较分析。实验表明,RFR 在检测准确性、预测误差和处理时间方面始终优于其他模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32fe/8779374/748d1e9cbc5e/sensors-22-00458-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索