Spaltenstein Paul, Giesler Riley J, Scherer Samuel R, Erickson Patrick W, Kay Michael S
Department of Biochemistry, University of Utah, 15 North Medical Drive East, Room 4100 Salt Lake, City, UT, 84112, United States.
Current affiliation: Aizen Therapeutics 1927 Pasco Rancho, Castilla, Los Angeles, CA, 90032, United States.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413644. doi: 10.1002/anie.202413644. Epub 2024 Oct 25.
Chemical protein synthesis enables access to proteins that would otherwise be difficult or impossible to obtain with traditional means such as recombinant expression. Chemoselective ligations provide the ability to join peptide segments prepared by solid-phase peptide synthesis. While native chemical ligation (NCL) is widely used, it is limited by the need for C-terminal thioesters with suitable reaction kinetics, properly placed native Cys or thiolated derivatives, and peptide segment solubility at low mM concentrations. Moreover, repetitive purifications to isolate ligated products are often yield-sapping, hampering efficiency and progress. In this work, we demonstrate the use of Controlled Activation of Peptides for Templated NCL (CAPTN). This traceless multi-segment templated NCL approach permits the one-pot synthesis of proteins by harnessing selective thioester activation and orthogonal conjugation chemistries to favor formation of the full-length ligated product while minimizing side reactions. Importantly, CAPTN provides kinetic enhancements allowing ligations at sterically hindered junctions and low peptide concentrations. Additionally, this one-pot approach removes the need for intermediate purification. We report the synthesis of two E. coli ribosomal subunits S16 and S17 enabled by the chemical tools described herein. We anticipate that CAPTN will expedite the synthesis of valuable proteins and expand on templated approaches for chemical protein synthesis.
化学蛋白质合成能够获得一些用传统方法(如重组表达)难以或无法获得的蛋白质。化学选择性连接提供了连接通过固相肽合成制备的肽段的能力。虽然天然化学连接(NCL)被广泛使用,但它受到以下限制:需要具有合适反应动力学的C端硫酯、适当位置的天然半胱氨酸或硫醇化衍生物,以及在低毫摩尔浓度下肽段的溶解性。此外,用于分离连接产物的重复纯化通常会降低产率,阻碍效率和进展。在这项工作中,我们展示了用于模板化NCL的肽的可控活化(CAPTN)的应用。这种无痕多段模板化NCL方法通过利用选择性硫酯活化和正交共轭化学,在有利于全长连接产物形成的同时最小化副反应,从而实现蛋白质的一锅法合成。重要的是,CAPTN提供了动力学增强,允许在空间位阻连接点和低肽浓度下进行连接。此外,这种一锅法无需中间纯化。我们报道了利用本文所述化学工具合成两种大肠杆菌核糖体亚基S16和S17。我们预计CAPTN将加快有价值蛋白质的合成,并扩展化学蛋白质合成的模板化方法。