Department of Orthopaedic Surgery, Udayana University, Prof I G N G Ngoerah Hospital Jl. Diponegoro, Dauh Puri Klod, Denpasar, Bali, 80113, Indonesia.
Institut Sains dan Teknologi Terpadu Surabaya, Surabaya, East Java, Indonesia.
Eur Spine J. 2024 Nov;33(11):4204-4213. doi: 10.1007/s00586-024-08464-7. Epub 2024 Aug 29.
Cross-sectional Database Study.
While the American Spinal Injury Association (ASIA) Impairment Scale is the standard for assessing spinal cord injuries (SCI), it has limitations due to subjectivity and impracticality. Advances in machine learning (ML) and image recognition have spurred research into their use for outcome prediction. This study aims to analyze deep learning techniques for identifying and classifying cervical SCI severity from MRI scans.
The study included patients with traumatic and nontraumatic cervical SCI admitted from 2019 to 2022. MRI images were labeled by two senior resident physicians. A deep convolutional neural network was trained using axial and sagittal cervical MRI images from the dataset. Model performance was assessed using Dice Score and IoU to measure segmentation accuracy by comparing predicted and ground truth masks. Classification accuracy was evaluated with the F1 Score, balancing false positives and negatives.
In the axial spinal cord segmentation, we achieved a Dice score of 0.94 for and IoU score of 0.89. In the sagittal spinal cord segmentation, we obtained Dice score up to 0.9201 and IoU scores up to 0.8541. The model for axial image score classification gave a satisfactory result with an F1 score of 0.72 and AUC of 0.79.
Our models successfully identified cervical SCI on T2-weighted MR images with satisfactory performance. Further research is needed to develop more advanced models for predicting patient outcomes in SCI cases.
横断面数据库研究。
虽然美国脊髓损伤协会(ASIA)损伤量表是评估脊髓损伤(SCI)的标准,但由于其主观性和不切实际性,存在一定的局限性。机器学习(ML)和图像识别的进步促使人们研究其在预测结果方面的应用。本研究旨在分析深度学习技术,以从 MRI 扫描中识别和分类颈椎 SCI 的严重程度。
该研究纳入了 2019 年至 2022 年期间因创伤性和非创伤性颈椎 SCI 入院的患者。MRI 图像由两位资深住院医师进行标注。使用来自数据集的颈椎轴位和矢状位 MRI 图像对深度卷积神经网络进行训练。通过比较预测和真实掩模,使用 Dice 分数和 IoU 来衡量分割准确性,评估模型性能。使用 F1 分数评估分类准确性,平衡假阳性和假阴性。
在轴向脊髓分割中,我们实现了 Dice 分数为 0.94 和 IoU 分数为 0.89。在矢状脊髓分割中,我们获得了高达 0.9201 的 Dice 分数和高达 0.8541 的 IoU 分数。轴向图像评分分类模型的 F1 分数为 0.72,AUC 为 0.79,取得了令人满意的结果。
我们的模型成功地在 T2 加权 MRI 图像上识别出颈椎 SCI,表现出令人满意的性能。需要进一步研究来开发更先进的模型,以预测 SCI 病例中的患者结局。