Suppr超能文献

人类子宫内膜整合单细胞参考图谱。

An integrated single-cell reference atlas of the human endometrium.

机构信息

Wellcome Sanger Institute, Cambridge, UK.

Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.

出版信息

Nat Genet. 2024 Sep;56(9):1925-1937. doi: 10.1038/s41588-024-01873-w. Epub 2024 Aug 28.

Abstract

The complex and dynamic cellular composition of the human endometrium remains poorly understood. Previous endometrial single-cell atlases profiled few donors and lacked consensus in defining cell types. We introduce the Human Endometrial Cell Atlas (HECA), a high-resolution single-cell reference atlas (313,527 cells) combining published and new endometrial single-cell transcriptomics datasets of 63 women with and without endometriosis. HECA assigns consensus and identifies previously unreported cell types, mapped in situ using spatial transcriptomics and validated using a new independent single-nuclei dataset (312,246 nuclei, 63 donors). In the functionalis, we identify intricate stromal-epithelial cell coordination via transforming growth factor beta (TGFβ) signaling. In the basalis, we define signaling between fibroblasts and an epithelial population expressing progenitor markers. Integration of HECA with large-scale endometriosis genome-wide association study data pinpoints decidualized stromal cells and macrophages as most likely dysregulated in endometriosis. The HECA is a valuable resource for studying endometrial physiology and disorders, and for guiding microphysiological in vitro systems development.

摘要

人类子宫内膜的复杂和动态细胞组成仍知之甚少。以前的子宫内膜单细胞图谱仅对少数供体进行了分析,并且在定义细胞类型方面缺乏共识。我们引入了人类子宫内膜细胞图谱(HECA),这是一个高分辨率的单细胞参考图谱(313,527 个细胞),结合了 63 名患有和不患有子宫内膜异位症的女性的已发表和新的子宫内膜单细胞转录组数据集。HECA 分配了共识并鉴定了以前未报道的细胞类型,这些细胞类型使用空间转录组学进行了原位映射,并使用新的独立单核数据集(312,246 个核,63 个供体)进行了验证。在功能层,我们通过转化生长因子β(TGFβ)信号发现了复杂的基质-上皮细胞协调。在基础层,我们定义了成纤维细胞与表达祖细胞标记的上皮细胞群之间的信号。将 HECA 与大规模子宫内膜异位症全基因组关联研究数据集成,确定了蜕膜化基质细胞和巨噬细胞在子宫内膜异位症中最有可能失调。HECA 是研究子宫内膜生理学和疾病的宝贵资源,也是指导微生理体外系统开发的宝贵资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/012a/11387200/584de26ca0ba/41588_2024_1873_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验