Anania Gabriele, Chiozza Matteo, Pedarzani Emma, Resta Giuseppe, Campagnaro Alberto, Pedon Sabrina, Valpiani Giorgia, Silecchia Gianfranco, Mascagni Pietro, Cuccurullo Diego, Reddavid Rossella, Azzolina Danila
Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy.
Clinical Trial and Biostatistics, Research and Development Unit, University Hospital of Ferrara, 44121 Ferrara, Italy.
Cancers (Basel). 2024 Aug 16;16(16):2857. doi: 10.3390/cancers16162857.
The evolution of laparoscopic right hemicolectomy, particularly with complete mesocolic excision (CME) and central vascular ligation (CVL), represents a significant advancement in colon cancer surgery. The CoDIG 1 and CoDIG 2 studies highlighted Italy's progressive approach, providing useful findings for optimizing patient outcomes and procedural efficiency. Within this context, accurately predicting postoperative length of stay (LoS) is crucial for improving resource allocation and patient care, yet its determination through machine learning techniques (MLTs) remains underexplored. This study aimed to harness MLTs to forecast the LoS for patients undergoing right hemicolectomy for colon cancer, using data from the CoDIG 1 (1224 patients) and CoDIG 2 (788 patients) studies. Multiple MLT algorithms, including random forest (RF) and support vector machine (SVM), were trained to predict LoS, with CoDIG 1 data used for internal validation and CoDIG 2 data for external validation. The RF algorithm showed a strong internal validation performance, achieving the best performances and a 0.92 ROC in predicting long-term stays (more than 5 days). External validation using the SVM model demonstrated 75% ROC values. Factors such as fast-track protocols, anastomosis, and drainage emerged as key predictors of LoS. Integrating MLTs into predicting postoperative LOS in colon cancer surgery offers a promising avenue for personalized patient care and improved surgical management. Using intraoperative features in the algorithm enables the profiling of a patient's stay based on the planned intervention. This issue is important for tailoring postoperative care to individual patients and for hospitals to effectively plan and manage long-term stays for more critical procedures.
腹腔镜右半结肠切除术的发展,尤其是全结肠系膜切除术(CME)和中央血管结扎术(CVL),代表了结肠癌手术的重大进展。CoDIG 1和CoDIG 2研究突出了意大利的渐进式方法,为优化患者预后和手术效率提供了有用的发现。在此背景下,准确预测术后住院时间(LoS)对于改善资源分配和患者护理至关重要,但通过机器学习技术(MLTs)来确定LoS仍未得到充分探索。本研究旨在利用MLTs,使用来自CoDIG 1(1224例患者)和CoDIG 2(788例患者)研究的数据,预测接受结肠癌右半结肠切除术患者的LoS。包括随机森林(RF)和支持向量机(SVM)在内的多种MLT算法被训练用于预测LoS,CoDIG 1数据用于内部验证,CoDIG 2数据用于外部验证。RF算法显示出强大的内部验证性能,在预测长期住院(超过5天)方面取得了最佳性能和0.92的ROC。使用SVM模型进行的外部验证显示ROC值为75%。快速康复方案、吻合和引流等因素成为LoS的关键预测因素。将MLTs整合到预测结肠癌手术术后LoS中,为个性化患者护理和改善手术管理提供了一条有前景的途径。在算法中使用术中特征能够根据计划的干预措施对患者的住院情况进行分析。这个问题对于为个体患者量身定制术后护理以及医院有效规划和管理更关键手术的长期住院至关重要。