Anania G, Mascagni P, Chiozza M, Resta G, Campagnaro A, Pedon S, Silecchia G, Cuccurullo D, Bergamini C, Sica G, Nicola V, Alberti M, Ortenzi M, Reddavid R, Azzolina D
Department of Medical Science, University of Ferrara, Ferrara, FE, Italy.
Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, RM, Italy.
Tech Coloproctol. 2025 Jun 11;29(1):135. doi: 10.1007/s10151-025-03165-9.
Postoperative complications in colorectal surgery can significantly impact patient outcomes and healthcare costs. Accurate prediction of these complications enables targeted perioperative management, improving patient safety and optimizing resource allocation. This study evaluates the application of machine learning (ML) models, particularly deep learning neural networks (DLNN), in predicting postoperative complications following laparoscopic right hemicolectomy for colon cancer.
Data were drawn from the CoDIG (ColonDx Italian Group) multicenter database, which includes information on patients undergoing laparoscopic right hemicolectomy with complete mesocolic excision (CME) and central vascular ligation (CVL). The dataset included demographic, clinical, and surgical factors as predictors. Models such as decision trees (DT), random forest (RF), and DLNN were trained, with DLNN evaluated using cross-validation metrics. To address class imbalance, the synthetic minority over-sampling technique (SMOTE) was employed. The primary outcome was the prediction of postoperative complications within 1 month of surgery.
The DLNN model outperformed other models, achieving an accuracy of 0.86, precision of 0.84, recall of 0.90, and an F1 score of 0.87. Relevant predictors identified included intraoperative minimal bleeding, blood transfusion, and adherence to the fast-track recovery protocol. The absence of intraoperative bleeding, intracorporeal anastomosis, and fast-track protocol adherence were associated with a reduced risk of complications.
The DLNN model demonstrated superior predictive performance for postoperative complications compared to other ML models. The findings highlight the potential of integrating ML models into clinical practice to identify high-risk patients and enable tailored perioperative care. Future research should focus on external validation and implementation of these models in diverse clinical settings to further optimize surgical outcomes.
结直肠手术的术后并发症会对患者的预后和医疗成本产生重大影响。准确预测这些并发症有助于进行有针对性的围手术期管理,提高患者安全性并优化资源分配。本研究评估了机器学习(ML)模型,特别是深度学习神经网络(DLNN),在预测结肠癌腹腔镜右半结肠切除术后并发症中的应用。
数据取自CoDIG(意大利结肠疾病诊断小组)多中心数据库,该数据库包含接受腹腔镜右半结肠切除术并进行完整结肠系膜切除(CME)和中央血管结扎(CVL)的患者信息。数据集包括人口统计学、临床和手术因素作为预测指标。对决策树(DT)、随机森林(RF)和DLNN等模型进行了训练,使用交叉验证指标对DLNN进行评估。为了解决类别不平衡问题,采用了合成少数过采样技术(SMOTE)。主要结局是预测术后1个月内的并发症。
DLNN模型的表现优于其他模型,准确率为0.86,精确率为0.84,召回率为0.90,F1评分为0.87。确定的相关预测因素包括术中最小出血量、输血以及对快速康复方案的依从性。术中无出血、体内吻合和遵循快速康复方案与并发症风险降低相关。
与其他ML模型相比,DLNN模型在预测术后并发症方面表现出卓越的性能。研究结果凸显了将ML模型整合到临床实践中以识别高危患者并实现个性化围手术期护理的潜力。未来的研究应侧重于这些模型在不同临床环境中的外部验证和实施,以进一步优化手术结局。